Convergence of Ritz values in the isometric Arnoldi process

S. Helsen

Department of Mathematics, Katholieke Universiteit Leuven, Celestijnenlaan 200B, 3001 Leuven, Belgium steff@wis.kuleuven.ac.be

A.B.J. Kuijlaars

Department of Mathematics, Katholieke Universiteit Leuven, Celestijnenlaan 200B, 3001 Leuven, Belgium arno@wis.kuleuven.ac.be

M. Van Barel

Department of Computer Science, Katholieke Universiteit Leuven, Celestijnenlaan 200A, 3001 Leuven, Belgium Marc.VanBarel@cs.kuleuven.ac.be

The IAP

full unitary matrix
reduction to Hessenberg form;
the subdiagonal contains strictly positive numbers
taking a principal left upper block;
this is not unitary anymore
renormalizing the last column to obtain a unitary matrix

Setting

- A sequence of unitary matrices $\left(U_{N}\right)_{N}$, each of dimension $N \times N$.
- The eigenvalues $\left\{\lambda_{k, N}\right\}_{k}$ and orthonormal eigenvectors $\left\{v_{k, N}\right\}_{k}$.
- A unit starting vector $b_{N} \in \mathbb{C}^{N}$ for every N.
- The $n \times n$ unitary Hessenberg matrix $H_{n, N}$ created by n steps of the IAP, with $n<N$.
- The characteristic polynomials $\psi_{n, N}$ of $H_{n, N}$.
- The eigenvalues $\left\{\theta_{k, n, N}\right\}_{k}$ of $H_{n, N}$, which are called the isometric Ritz values.

Potential Theory

$$
\begin{gathered}
U^{\mu}(z)=\int \log \frac{1}{\left|z-z^{\prime}\right|} \mathrm{d} \mu\left(z^{\prime}\right) \\
I(\mu)=\iint \log \frac{1}{\left|z-z^{\prime}\right|} \mathrm{d} \mu(z) \mathrm{d} \mu\left(z^{\prime}\right)
\end{gathered}
$$

Conditions

1. There exists a probability measure σ with U^{σ} real valued and continuous such that

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{j=1}^{N} \delta_{\lambda_{j, N}}=\sigma
$$

2. For all $\varepsilon>0$ there exists a $\delta \in(0,1)$ and an $N_{0} \in \mathbb{N}$ so that for all $N>N_{0}$ and for all $k \leqslant N$

$$
\prod_{\substack{j=1 \\ 0<\left|\lambda_{j, N}-\lambda_{k, N}\right|<\delta}}^{N}\left|\lambda_{j, N}-\lambda_{k, N}\right|>\mathrm{e}^{-N \varepsilon}
$$

3. For every N, we have that $\left\|b_{N}\right\|=1$ and

$$
\lim _{N \rightarrow \infty}\left(\min _{1 \leqslant k \leqslant N}\left|\left\langle b_{N}, v_{k, N}\right\rangle\right|\right)^{1 / N}=1
$$

Results

Theorem 1 There exists a probability measure μ_{t}, depending only on t and σ, such that

$$
\begin{gathered}
\lim _{\substack{n, N \rightarrow \infty \\
n / N \rightarrow t}} \frac{1}{n} \sum_{j=1}^{n} \delta_{\theta_{j, n, N}}=\mu_{t} \\
0 \leqslant t \mu_{t} \leqslant \sigma, \quad \int \mathrm{~d} \mu_{t}=1
\end{gathered}
$$

μ_{t} minimizes the logarithmic energy $I(\mu)$ among all measures μ satisfying $0 \leqslant t \mu \leqslant \sigma$ and $\int \mathrm{d} \mu=1$. Moreover the logarithmic potential $U^{\mu_{t}}$ of μ_{t} is a continuous function on \mathbb{C}. There also exists a real constant F_{t} such that

$$
\lim _{\substack{n, N \rightarrow \infty \\ n / N \rightarrow t}}\left\|\psi_{n, N}\left(U_{N}\right) b_{N}\right\|^{1 / n}=\exp \left(-F_{t}\right)
$$

and

$$
\begin{cases}U^{\mu_{t}}(z)=F_{t} & \text { for } z \in \operatorname{supp}\left(\sigma-t \mu_{t}\right) \\ U^{\mu_{t}}(z) \leqslant F_{t} & \text { for } z \in \mathbb{C}\end{cases}
$$

Results

Theorem 2 For every $\left(\lambda_{k_{N}, N}\right)_{N}$ converging to $\lambda \in \mathbb{T}$ and for every $t \in(0,1)$

$$
\begin{aligned}
& \limsup _{\substack{n, N \rightarrow \infty \\
n / N \rightarrow t}} \min _{j}\left|\lambda_{k_{N}, N}-\theta_{j, n, N}\right|^{1 / n} \\
& \leqslant \exp \left(U^{\mu_{t}}(\lambda)-F_{t}\right)
\end{aligned}
$$

We define the set

$$
\Lambda(t, \sigma):=\left\{z \in \mathbb{T} \mid U^{\mu_{t}}(z)<F_{t}\right\}
$$

Theorem 3 For nearly every $\left(\lambda_{k_{N}, N}\right)_{N}$ converging to $\lambda \in \Lambda(t, \sigma)$ and for every $t \in(0,1)$

$$
\begin{aligned}
\lim _{\substack{n, N \rightarrow \infty \\
n / N \rightarrow t}} \min _{j} \mid \lambda_{k_{N}, N} & -\left.\theta_{j, n, N}\right|^{1 / n} \\
& =\exp \left(2\left(U^{\mu_{t}}(\lambda)-F_{t}\right)\right) .
\end{aligned}
$$

Numerical Experiments

Numerical Experiments

Positioning i.R.v.

