Convergence of the Arnoldi process for unitary matrices

S. Helsen

Department of Mathematics, Katholieke Universiteit Leuven, Celestijnenlaan 200B, 3001 Leuven, Belgium steff@wis.kuleuven.ac.be

A.B.J. Kuijlaars

Department of Mathematics, Katholieke Universiteit Leuven, Celestijnenlaan 200B, 3001 Leuven, Belgium arno@wis.kuleuven.ac.be

M. Van Barel

Department of Computer Science, Katholieke Universiteit Leuven, Celestijnenlaan 200A, 3001 Leuven, Belgium Marc.VanBarel@cs.kuleuven.ac.be

Overview

- 1. The Isometric Arnoldi Process
- 2. Orthogonal Polynomials
- 3. Unitary Hessenberg Matrices
- 4. Para-Orthogonal Polynomials
- 5. Theoretical Setting
- 6. Potential Theory
- 7. Conditions
- 8. Results
- 9. Position Isometric Ritz Values
- 10. Numerical Setting
- 11. Equilibrium Measure
- 12. Numerical Experiments

2. Orthogonal Polynomials

- Unitary matrix $U \in \mathbb{C}^{N \times N}$
- Simple eigenvalues $\lambda_1, \ldots, \lambda_N$, eigenvectors v_1, \ldots, v_N
- Unit starting vector b
- $\mu := \sum |\langle b, v_j \rangle|^2 \delta_{\lambda_j} \quad (\to \int d\mu = 1)$

Lemma 1 For every function $f : \mathbb{T} \to \mathbb{C}$, we have $||f(U)b||^2 = \int |f|^2 d\mu$.

• IAP transforms U into an upper Hessenberg matrix H

•
$$\phi_n(z) := \det(zI_n - H_n)$$

Lemma 2 The polynomial ϕ_n is the monic polynomial of degree n that is orthogonal with respect to μ .

Arnoldi minimization problem:

Minimize $||p_n(U)b||$ among all monic polynomials p_n of degree n.

3. Unitary Hessenberg Matrices
•
$$H = G_1(\gamma_1) \cdots G_{N-1}(\gamma_{N-1})\tilde{G}_N(\gamma_N)$$

• $|\gamma_j| < 1$ for $j = 1, \dots, N-1$ and $|\gamma_N| = 1$
• $G_j(\alpha) = \begin{bmatrix} I_{j-1} & & \\ & -\alpha & \sqrt{1-|\alpha|^2} \\ & \sqrt{1-|\alpha|^2} & \bar{\alpha} \end{bmatrix}$
• $\tilde{G}_N(\alpha) = \begin{bmatrix} I_{N-1} & & \\ & -\alpha \end{bmatrix}$.
• notation $H = H(\gamma_1, \dots, \gamma_N)$
• $H_n = H(\gamma_1, \dots, \gamma_n)$
• $\phi_n(0) = \gamma_n$
• $H_n \rightsquigarrow \tilde{H}_n$ (unitary)
• $\tilde{H}_n = H(\gamma_n, \dots, \gamma_{n-1}, \rho_n)$ with $|\rho_n| = 1$

4. Para-Orthogonal Polynomials

• reciprocal polynomial $p^*(z) = z^n \overline{p(1/\overline{z})}$

• para-orthogonal polynomials

$$\psi_n(z) := \frac{\phi_n(z) + \omega_n \phi_n^*(z)}{1 + \omega_n \bar{\gamma}_n}$$
, with $|\omega_n| = 1$

• if
$$\omega_n = \rho_n \left(\frac{1 - \bar{\rho}_n \gamma_n}{1 - \rho_n \bar{\gamma}_n} \right)$$
, then
 $\psi_n = \det(zI_n - \tilde{H}_n)$

Isometric Arnoldi minimization problem:

Minimize $||p_n(U)b||$ among all monic polynomials p_n of degree n satisfying $p_n(0) = \rho_n$, where $\rho_n \in \mathbb{T}$ is given.

Theorem 3 The minimizer of the Isometric Arnoldi minimization problem is unique and it is given by the monic para-orthogonal polynomial $\psi_n(z)$ where ω_n is related to ρ_n as above.

Proposition 4 Let n < N. Then the zeroes of ψ_n are separated by the eigenvalues of U.

5. Theoretical Setting

- A sequence of unitary matrices $(U_N)_N$, each of dimension $N \times N$.
- The eigenvalues $\{\lambda_{k,N}\}_k$ and orthonormal eigenvectors $\{v_{k,N}\}_k$.
- A unit starting vector $b_N \in \mathbb{C}^N$ for every N.
- The $n \times n$ unitary Hessenberg matrix $H_{n,N}$ created by n steps of the IAP, with n < N.
- The characteristic polynomials $\psi_{n,N}$ of $\tilde{H}_{n,N}$.
- The eigenvalues $\{\theta_{k,n,N}\}_k$ of $\tilde{H}_{n,N}$, which are called the isometric Ritz values.

6. Potential Theory

$$U^{\mu}(z) = \int \log \frac{1}{|z - z'|} d\mu(z'),$$
$$I(\mu) = \iint \log \frac{1}{|z - z'|} d\mu(z) d\mu(z').$$

7. <u>Conditions</u>

1. There exists a probability measure σ with U^{σ} real valued and continuous such that

$$\lim_{N \to \infty} \frac{1}{N} \sum_{j=1}^{N} \delta_{\lambda_{j,N}} = \sigma.$$

2. For all $\varepsilon > 0$ there exists a $\delta \in (0, 1)$ and an $N_0 \in \mathbb{N}$ so that for all $N > N_0$ and for all $k \leq N$

$$\prod_{\substack{j=1\\0<|\lambda_{j,N}-\lambda_{k,N}|<\delta}}^{N} |\lambda_{j,N}-\lambda_{k,N}| > e^{-N\varepsilon}$$

3. For every N, we have that $||b_N|| = 1$ and $\lim_{N \to \infty} \left(\min_{1 \le k \le N} |\langle b_N, v_{k,N} \rangle| \right)^{1/N} = 1.$

limits: We let N and n go to ∞ in such fashion that $n/N \to t \in (0, 1)$. notation: $\lim_{\substack{n,N\to\infty\\n/N\to t}}$

8. <u>Results</u>

Theorem 5 There exists a probability measure μ_t , depending only on t and σ , such that

$$\lim_{\substack{n,N\to\infty\\n/N\to t}} \frac{1}{n} \sum_{j=1}^n \delta_{\theta_{j,n,N}} = \mu_t,$$
$$0 \leq t\mu_t \leq \sigma, \qquad \int d\mu_t = 1.$$

 μ_t minimizes the logarithmic energy $I(\mu)$ among all measures μ satisfying $0 \leq t\mu \leq \sigma$ and $\int d\mu = 1$. Moreover the logarithmic potential U^{μ_t} of μ_t is a continuous function on \mathbb{C} . There also exists a real constant F_t such that

$$\lim_{\substack{n,N\to\infty\\n/N\to t}} \|\psi_{n,N}(U_N)b_N\|^{1/n} = \exp(-F_t)$$

and

$$\begin{cases} U^{\mu_t}(z) = F_t & \text{for } z \in \text{supp}(\sigma - t\mu_t), \\ U^{\mu_t}(z) \leqslant F_t & \text{for } z \in \mathbb{C}. \end{cases}$$

8. <u>Results</u> (2)

Theorem 6 For every $(\lambda_{k_N,N})_N$ converging to $\lambda \in \mathbb{T}$ and for every $t \in (0,1)$

 $\limsup_{\substack{n,N\to\infty\\n/N\to t}} \min_{j} |\lambda_{k_N,N} - \theta_{j,n,N}|^{1/n}$

$$\leq \exp(U^{\mu_t}(\lambda) - F_t).$$

We define the set

$$\Lambda(t,\sigma) := \{ z \in \mathbb{T} \mid U^{\mu_t}(z) < F_t \}.$$

Theorem 7 For nearly every $(\lambda_{k_N,N})_N$ converging to $\lambda \in \Lambda(t,\sigma)$ and for every $t \in (0,1)$

$$\lim_{\substack{n,N\to\infty\\n/N\to t}} \min_{j} |\lambda_{k_N,N} - \theta_{j,n,N}|^{1/n} = \exp\Big(2\big(U^{\mu_t}(\lambda) - F_t\big)\Big).$$

10. Numerical Setting

- We fix a matrix U, hence also N.
- We let n go from 1 to N, hence t goes from 0 to 1.

11. Equilibrium measure

- Remember μ_t minimizes $I(\mu)$ among all measures μ satisfying $0 \leq t\mu \leq \sigma$.
- If we minimize without constraint, we get the equilibrium measure $\mu_{\mathbb{T}}$.
- $\mu_{\mathbb{T}}$ is equal to the Lebesgue measure.
- So if $t\mu_{\mathbb{T}} \leq \sigma$, $\mu_t = \mu_{\mathbb{T}}$ and we can not expect any convergence.
- One can show that in the region where $t\mu_{\mathbb{T}} > \sigma, t\mu_t = \sigma.$
- At first no eigenvalues are found.
- Then $t\mu_{\mathbb{T}}$ hits σ .
- So in the region with the lowest eigenvalue density, eigenvalues are found first!

