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M otivation

-

How are eigenvalues computed?
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M otivation

-

How are eigenvalues computed?

Large Hermitian matrix (dimension m)
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M otivation

-

How are eigenvalues computed?

tridiagonalize: finite process

4
Householder: §m3 flops
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M otivation

-

How are eigenvalues computed?

diagonalize: iterative process

QR
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M otivation

-

How are eigenvalues computed?

submatrix (dimension n)
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M otivation

-

How are eigenvalues computed?

NN

Ritz values
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M otivation

-

How are eigenvalues computed?

NN

Lanczos method
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M otivation

-

Connection eigenvalues and Ritz values?

# eigenvalue distribution o
n

o t=—
m

# Ritz value distribution p; ?
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M otivation

-

Connection eigenvalues and Ritz values?

# eigenvalue distribution o

n
® t=—
m

# Ritz value distribution p; ?

» depends only ono andt (!)
s 0Kty <o

o ...
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Potential theory

-

1 . measure with compact support on C

the logarithmic potential of

1
ly — 2|

U(2) i= [ log - du(y)

the logarithmic energy of u

I(p) == / / log — du(y) du(2)

ly — 2|
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Potential theory
fEnergy Problem: T

Minimize I(x) among all Borel probability measures . on K.

K: CompactsetinC
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Potential theory
fEnergy Problem: T

Minimize I(x) among all Borel probability measures . on K.

— pg (equilibrium measure)
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Potential theory

- N

nergy Problem:
Minimize I(x) among all Borel probability measures . on K.

— pg (equilibrium measure)

property:
#® UHKK |s constant on K and smaller everywhere else.
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Potential theory
. -

nergy Problem:
Minimize I(x) among all Borel probability measures . on K.

— pg (equilibrium measure)

Constrained Energy Problem:

Minimize I(x) among all Borel probability measures u that
satisfy 0 < tu < o.

o . Borel probability measure with compact support K ¢ C
t € (0,1)
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Potential theory
. -

nergy Problem:
Minimize I(x) among all Borel probability measures . on K.

— pg (equilibrium measure)

Constrained Energy Problem:

Minimize I(x) among all Borel probability measures u that
satisfy 0 < tu < o.

— it
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Potential theory
. -

nergy Problem:
Minimize I(x) among all Borel probability measures . on K.

— pg (equilibrium measure)

Constrained Energy Problem:

Minimize I(x) among all Borel probability measures u that
satisfy 0 < tu < o.

— it

properties:
® iftug <o, then u = puk.
# UM is constant (F;) on supp(o — tu), and smaller

L everywhere else. J
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equilibrium measure of [-1,1]

Potential theory
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Potential theory
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Potential theory

o N

solution of the CEP with t=0.25 potential
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Connection with the motivation

O N

Which eigenvalues are approximated, and the quality of the
approximation, can be obtained from the Constrained

Energy Problem:

# In the region where tu; = o, eigenvalues are well
approximated.

# The distance from an eigenvalue X to the nearest Ritz
value @ Is given by

exp(2n(UH(\) — F})).
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Connection with the motivation

o N

approximation error
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Connection with the motivation

-

approximation error
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Thealgorithm: Main idea

o N

Property 1

The only probability measure u that satisfies 0 < tu < o and
whose potential U* is constant on supp(o — tu) and smaller
everywhere else, IS p;.
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Thealgorithm: Main idea
- -

Property 1
The only probability measure u that satisfies 0 < tu < o and
whose potential U is constant on supp(o — tu) and smaller

everywhere else, IS p;.

Property 2
Suppose pu is a probability measure whose potential U* is

constant on supp(o — tu), then supp(o — tu;) is a subset of
supp(o — tp)™.
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Thealgorithm: Main idea

o N

Property 1

The only probability measure u that satisfies 0 < tu < o and
whose potential U is constant on supp(o — tu) and smaller
everywhere else, IS p;.

Property 2
Suppose pu is a probability measure whose potential U* is
constant on supp(o — tu), then supp(o — tu;) is a subset of

supp(o — tp)™.

Corollary
Suppose p Is a probability measure whose potential U# Is
constant on supp(o — tu), then on the region where tu > o,

\—t,u,t =0. J
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Thealgorithm: Main idea
A

lgorithm
iInput: o, t
I := supp(o)
J:=0
while (not converged)
/-"lJ T UIJ
UHlr — ¢ — ygrls
solve
leelzll =1 = ||l s
I:={tu <o}
J = {tu > o}
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demo 1
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Thealgorithm: Main idea

- N

The only probability measure u that satisfies 0 < tu < o and
whose potential U* is constant on supp(o — tx) and smaller
everywhere else, Is p;.

Ukl — ¢ — guls
solve
leelzll = 1 — ||l 5|

emark:

We do not ask the potential to be smaller everywhere else,
but one can prove that it is satisfied in every step of the
algorithm.
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Thealgorithm: Discretization

-

We discretize the support of o : x9,x1,...,2x5y and we
suppose the density of u Is piecewise linear on each of the
subintervals.

-

du(z) = (ajx + bj)dz forz € [xj_1,25].
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Thealgorithm: Discretization
-

We discretize the support of o : x9,x1,...,2x5y and we
suppose the density of u Is piecewise linear on each of the
subintervals.

-

du(z) = (ajx + bj)dz forz € [xj_1,25].

The area of a trapezoid is 3(Ib + sb )x h, so the total mass
of u is Z;-\Ll(/.l,j_l + p)(z; — xj—1)/2. With this, we can
create a rowvector mi such thatm - 77 = ||u||.
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Algorithm: Discretization

o N

Uk(y) = / log vaiyl du(z)

= log a;x + b;) dx
;Lj_l |x—y|( J .7)
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Algorithm: Discretization

o N

Uk(y) = / log vaiyl du(z)

= log a;x + b;) dx
;Lj_l |:1:—y|( J .7)

The primitive function of z logm is

0 fr=y

o |
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Algorithm: Discretization

B -
Uk(y) = / log — du(z)

|z — 9|

= log a;x + b;) dx
;/ﬂ;j_l |:1:—y|( J .7)

The primitive function of z — zlog Tiyl is

Yy fxr=y

o |
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Algorithm: Discretization

o N

Uk(y) = / log vaiyl du(z)

x; 1
— zj: /mj_l log P— (ajz + b;j) dx
= aj(9(x;,y) — 9(xj-1,v)) + b (f(z),y) — f(zj-1,9))
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Algorithm: Discretization

B -
Uk(y) = / log — du(z)

|z — 9|

x; 1
— zj: /mj_l log P— (ajz + b;j) dx
= aj(9(x;,y) — 9(xj-1,v)) + b (f(z),y) — f(zj-1,9))

fa" _ By~ i1
it =0Ti1+by )Y m—xi
i = ajxj + b; bj = pj — a;z; = Tjlj—1 — Lj—1H;

X Tj— Tj—1

o |
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Algorithm: Discretization

o N

Uk(y) = / log vaiyl du(z)

x; 1
— zj: /mj_l log P— (ajz + b;j) dx
= aj(9(x;,y) — 9(xj-1,v)) + b (f(z),y) — f(zj-1,9))

(Uﬂ(xj))j =P
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demo 2

demo 3
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Todo

code optimization

stability

more tests

multiple intervals

comparing with other algorithms
other applications
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Thank you
for your attention!

(The End)
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