A Numerical Solution of the Constrained Energy Problem

Steff Helsen

(joint work with Marc Van Barel)

K.U. Leuven, 07/05/04

Outline

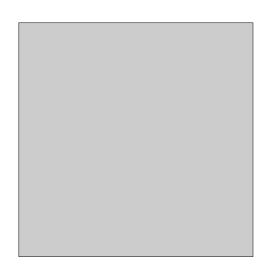
- Motivation
- Potential theory
- Connection with the motivation
- The algorithm
 - Main idea
 - Discretization
 - Refinement
- Todo

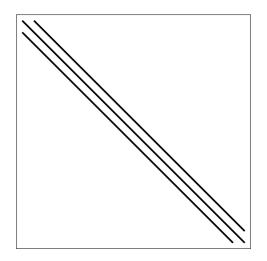
How are eigenvalues computed?

How are eigenvalues computed?

Large Hermitian matrix (dimension m)

How are eigenvalues computed?

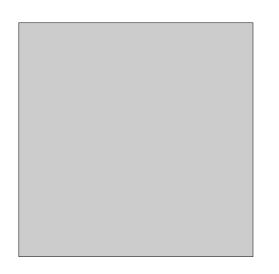


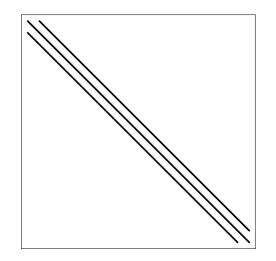


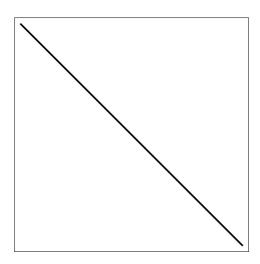
tridiagonalize: finite process

Householder: $\frac{4}{3}m^3$ flops

How are eigenvalues computed?

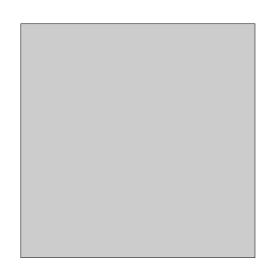


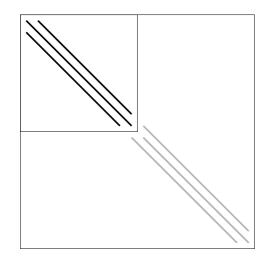


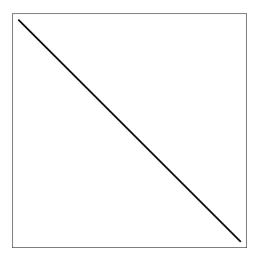


diagonalize: iterative process QR

How are eigenvalues computed?

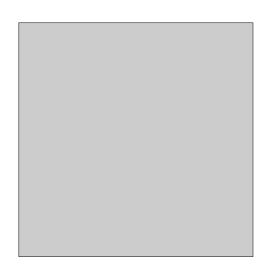


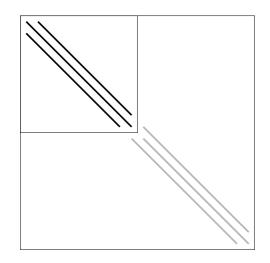


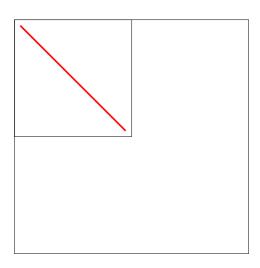


submatrix (dimension n)

How are eigenvalues computed?

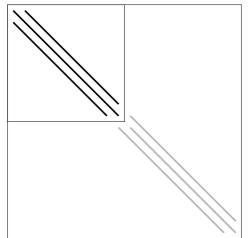


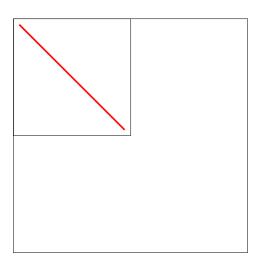




Ritz values

How are eigenvalues computed?





Lanczos method

Connection eigenvalues and Ritz values?

- ullet eigenvalue distribution σ
- $lacksquare t = rac{n}{m}$
- Ritz value distribution μ_t ?

Connection eigenvalues and Ritz values?

- ullet eigenvalue distribution σ
- $lacksquare t = rac{n}{m}$
- Ritz value distribution μ_t ?
 - depends only on σ and t (!)
 - $0 \leqslant t\mu_t \leqslant \sigma$
 - **.** . . .

 μ : measure with compact support on $\mathbb C$

the logarithmic potential of μ :

$$U^{\mu}(z) := \int \log rac{1}{|y-z|} \, \mathrm{d}\mu(y)$$

the logarithmic energy of μ :

$$I(\mu) := \iint \log rac{1}{|y-z|} \, \mathrm{d}\mu(y) \, \mathrm{d}\mu(z)$$

Energy Problem:

Minimize $I(\mu)$ among all Borel probability measures μ on K.

K: Compact set in \mathbb{C}

Energy Problem:

Minimize $I(\mu)$ among all Borel probability measures μ on K.

 $\rightarrow \mu_K$ (equilibrium measure)

Energy Problem:

Minimize $I(\mu)$ among all Borel probability measures μ on K.

 $\rightarrow \mu_K$ (equilibrium measure)

property:

• U^{μ_K} is constant on K and smaller everywhere else.

Energy Problem:

Minimize $I(\mu)$ among all Borel probability measures μ on K.

 $\rightarrow \mu_K$ (equilibrium measure)

Constrained Energy Problem:

Minimize $I(\mu)$ among all Borel probability measures μ that satisfy $0 \leqslant t\mu \leqslant \sigma$.

 σ : Borel probability measure with compact support $K\subset \mathbb{C}$ $t\in (0,1)$

Energy Problem:

Minimize $I(\mu)$ among all Borel probability measures μ on K.

 $\rightarrow \mu_K$ (equilibrium measure)

Constrained Energy Problem:

Minimize $I(\mu)$ among all Borel probability measures μ that satisfy $0 \leqslant t\mu \leqslant \sigma$.

 $\rightarrow \mu_t$

Energy Problem:

Minimize $I(\mu)$ among all Borel probability measures μ on K.

 $\rightarrow \mu_K$ (equilibrium measure)

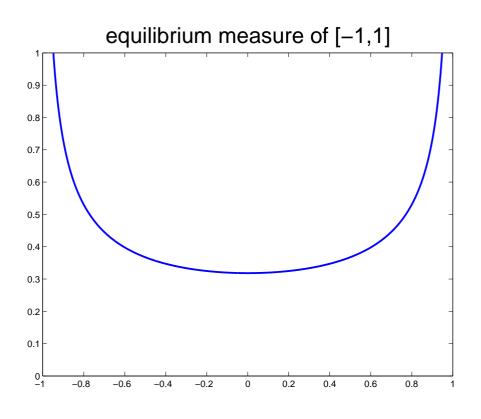
Constrained Energy Problem:

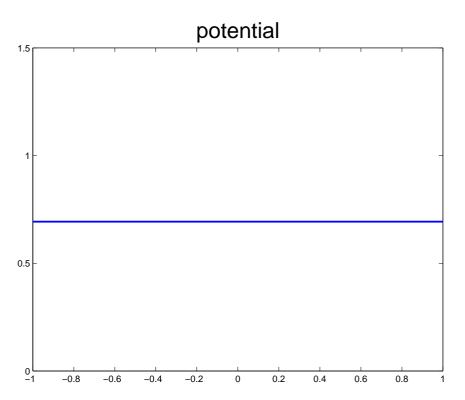
Minimize $I(\mu)$ among all Borel probability measures μ that satisfy $0 \leqslant t\mu \leqslant \sigma$.

 $\rightarrow \mu_t$

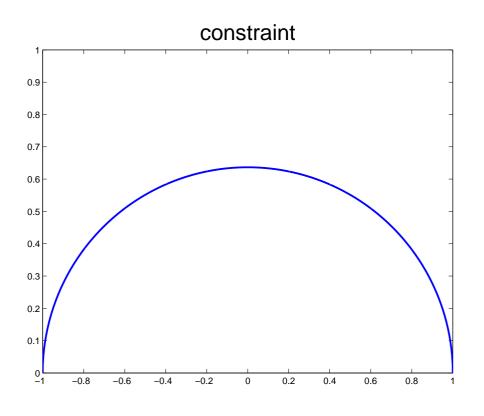
properties:

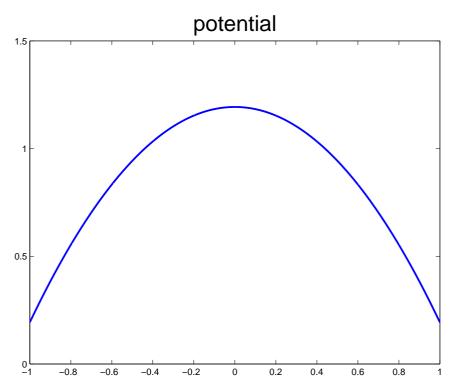
- if $t\mu_K \leqslant \sigma$, then $\mu_t = \mu_K$.
- U^{μ_t} is constant (F_t) on $\operatorname{supp}(\sigma t\mu_t)$, and smaller everywhere else.



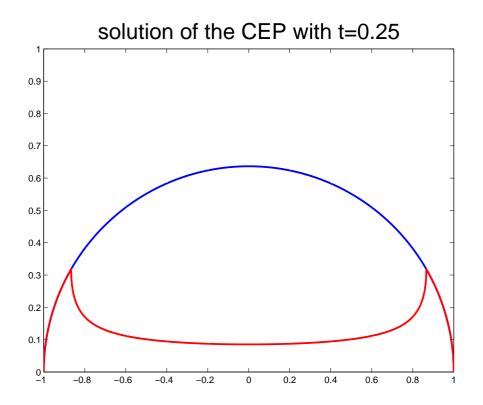


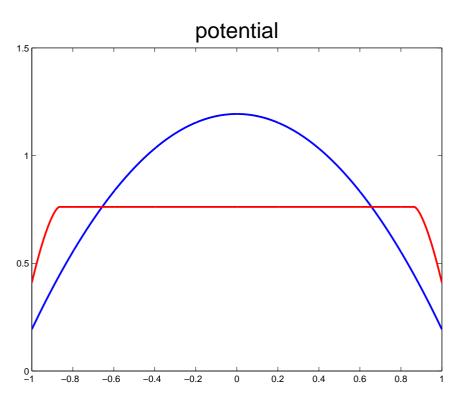
$$\frac{1}{\pi\sqrt{1-x^2}}$$





$$\frac{2\sqrt{1-x^2}}{\pi}$$





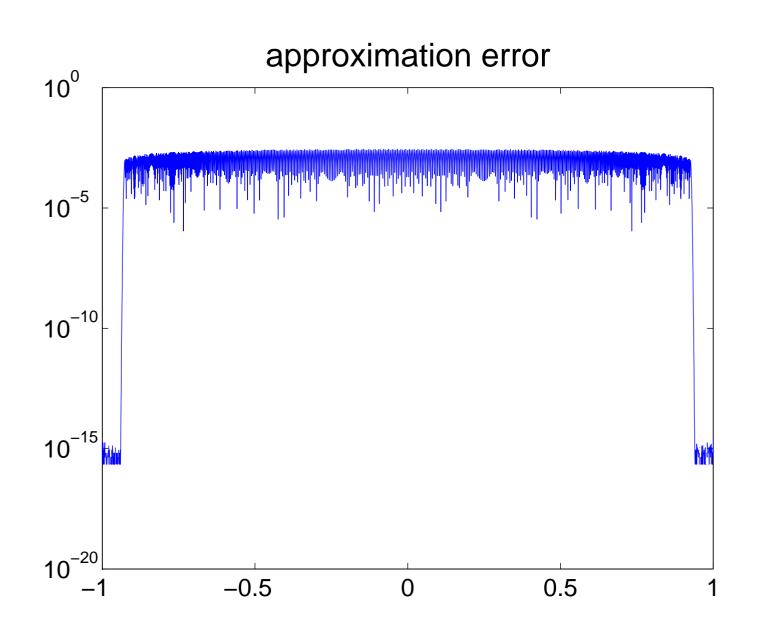
Connection with the motivation

Which eigenvalues are approximated, and the quality of the approximation, can be obtained from the Constrained Energy Problem:

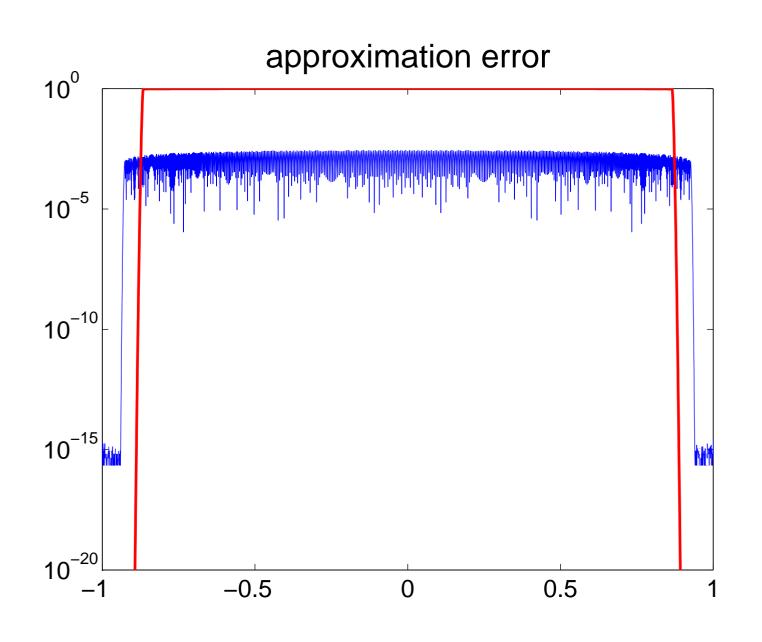
- In the region where $t\mu_t = \sigma$, eigenvalues are well approximated.
- The distance from an eigenvalue λ to the nearest Ritz value θ is given by

$$\exp(2n(U^{\mu_t}(\lambda)-F_t)).$$

Connection with the motivation



Connection with the motivation



Property 1

The only probability measure μ that satisfies $0 \le t\mu \le \sigma$ and whose potential U^{μ} is constant on $\operatorname{supp}(\sigma - t\mu)$ and smaller everywhere else, is μ_t .

Property 1

The only probability measure μ that satisfies $0 \le t\mu \le \sigma$ and whose potential U^{μ} is constant on $\operatorname{supp}(\sigma - t\mu)$ and smaller everywhere else, is μ_t .

Property 2

Suppose μ is a probability measure whose potential U^{μ} is constant on $\operatorname{supp}(\sigma - t\mu)$, then $\operatorname{supp}(\sigma - t\mu)$ is a subset of $\operatorname{supp}(\sigma - t\mu)^+$.

Property 1

The only probability measure μ that satisfies $0 \le t\mu \le \sigma$ and whose potential U^{μ} is constant on $\operatorname{supp}(\sigma - t\mu)$ and smaller everywhere else, is μ_t .

Property 2

Suppose μ is a probability measure whose potential U^{μ} is constant on $\operatorname{supp}(\sigma - t\mu)$, then $\operatorname{supp}(\sigma - t\mu_t)$ is a subset of $\operatorname{supp}(\sigma - t\mu)^+$.

Corollary

Suppose μ is a probability measure whose potential U^{μ} is constant on $\operatorname{supp}(\sigma - t\mu)$, then on the region where $t\mu \geqslant \sigma$, $t\mu_t = \sigma$.

Algorithm

```
input: \sigma, t
I := \operatorname{supp}(\sigma)
J := \emptyset
while (not converged)
           \mu|_J := \frac{1}{t} \, \sigma|_J
           solve \left\{ \begin{array}{l} U^{\mu|_I} = C - U^{\mu|_J} \\ \|\mu|_I\| = 1 - \|\mu|_J\| \end{array} \right.
            I := \{ \text{``}t\mu < \sigma\text{''}\}
            J := \{ \text{``} t\mu \geqslant \sigma \text{''} \}
\mu_t := \mu
```

demo 1

Remark:

The only probability measure μ that satisfies $0 \le t\mu \le \sigma$ and whose potential U^{μ} is constant on $\operatorname{supp}(\sigma - t\mu)$ and smaller everywhere else, is μ_t .

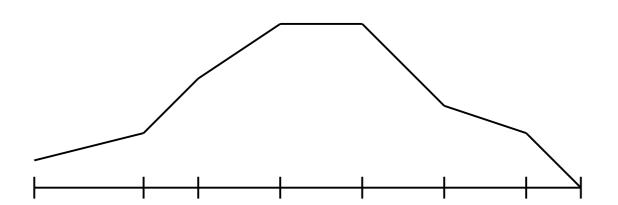
solve
$$\left\{ egin{array}{l} U^{\mu|_I} = C - U^{\mu|_J} \ \|\mu|_I\| = 1 - \|\mu|_J\| \end{array}
ight.$$

We do not ask the potential to be smaller everywhere else, but one can prove that it is satisfied in every step of the algorithm.

The algorithm: Discretization

We discretize the support of σ : x_0, x_1, \ldots, x_N and we suppose the density of μ is piecewise linear on each of the subintervals.

$$d\mu(x) = (a_j x + b_j) dx \qquad \text{for } x \in [x_{j-1}, x_j].$$

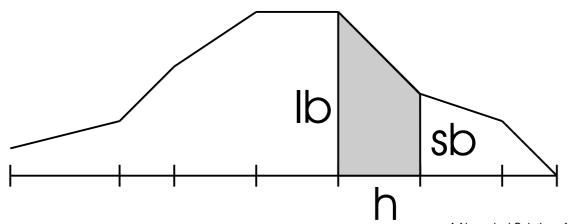


The algorithm: Discretization

We discretize the support of σ : x_0, x_1, \ldots, x_N and we suppose the density of μ is piecewise linear on each of the subintervals.

$$d\mu(x) = (a_j x + b_j) dx \qquad \text{for } x \in [x_{j-1}, x_j].$$

The area of a trapezoid is $\frac{1}{2}(\text{lb} + \text{sb}) \times \text{h}$, so the total mass of μ is $\sum_{j=1}^{N} (\mu_{j-1} + \mu_{j})(x_{j} - x_{j-1})/2$. With this, we can create a rowvector \overrightarrow{m} such that $\overrightarrow{m} \cdot \overrightarrow{\mu} = \|\mu\|$.



$$U^{\mu}(y) = \int \log \frac{1}{|x-y|} d\mu(x)$$

$$= \sum_{j} \int_{x_{j-1}}^{x_{j}} \log \frac{1}{|x-y|} (a_{j}x + b_{j}) dx$$

$$U^{\mu}(y) = \int \log \frac{1}{|x - y|} d\mu(x)$$

$$= \sum_{j} \int_{x_{j-1}}^{x_{j}} \log \frac{1}{|x - y|} (a_{j}x + b_{j}) dx$$

The primitive function of $x \mapsto \log \frac{1}{|x-y|}$ is

$$f(x,y) := egin{cases} (x-y)(\log |x-y|-1) & ext{if } x
eq y \ 0 & ext{if } x=y \end{cases}$$

$$U^{\mu}(y) = \int \log \frac{1}{|x - y|} d\mu(x)$$

$$= \sum_{j} \int_{x_{j-1}}^{x_{j}} \log \frac{1}{|x - y|} (a_{j}x + b_{j}) dx$$

The primitive function of $x \mapsto x \log \frac{1}{|x-y|}$ is

$$g(x,y) := \begin{cases} \frac{1}{2} \log |x - y| (x^2 - y^2) + \frac{1}{4} (x + y)^2 & \text{if } x \neq y \\ y^2 & \text{if } x = y \end{cases}$$

$$U^{\mu}(y) = \int \log \frac{1}{|x - y|} d\mu(x)$$

$$= \sum_{j} \int_{x_{j-1}}^{x_{j}} \log \frac{1}{|x - y|} (a_{j}x + b_{j}) dx$$

$$= \sum_{j} a_{j} (g(x_{j}, y) - g(x_{j-1}, y)) + b_{j} (f(x_{j}, y) - f(x_{j-1}, y))$$

$$U^{\mu}(y) = \int \log \frac{1}{|x - y|} d\mu(x)$$

$$= \sum_{j} \int_{x_{j-1}}^{x_{j}} \log \frac{1}{|x - y|} (a_{j}x + b_{j}) dx$$

$$= \sum_{j} a_{j} (g(x_{j}, y) - g(x_{j-1}, y)) + b_{j} (f(x_{j}, y) - f(x_{j-1}, y))$$

$$\begin{cases} \mu_{j-1} = a_j x_{j-1} + b_j \\ \mu_{j} = a_j x_j + b_j \end{cases} \Rightarrow \begin{cases} a_j = \frac{\mu_j - \mu_{j-1}}{x_j - x_{j-1}} \\ b_j = \mu_j - a_j x_j = \frac{x_j \mu_{j-1} - x_{j-1} \mu_j}{x_j - x_{j-1}} \end{cases}$$

$$\begin{split} U^{\mu}(y) &= \int \log \frac{1}{|x-y|} \, d\mu(x) \\ &= \sum_{j} \int_{x_{j-1}}^{x_{j}} \log \frac{1}{|x-y|} (a_{j}x + b_{j}) \, dx \\ &= \sum_{j} a_{j} (g(x_{j}, y) - g(x_{j-1}, y)) + b_{j} (f(x_{j}, y) - f(x_{j-1}, y)) \end{split}$$

$$(U^{\mu}(x_j))_j = P \overrightarrow{\mu}$$

demo 2

demo 3

Todo

- code optimization
- stability
- more tests
- multiple intervals
- comparing with other algorithms
- other applications
- **_**

Thank you for your attention!

(The End)