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Abstract

An algorithm is proposed to solve the constrained energy problem from potential theory. Numerical examples are
presented, showing the accuracy of the algorithm. The algorithm is also compared with another numerical method
for the same problem.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In logarithmic potential theory the properties of (super-)harmonic functions in the complex plane are
studied. With relatively few ingredients, a deep theory is built. The constrained energy problem (CEP)
is an important problem in this logarithmic potential theory. So knowledge of its solution is certainly of
theoretical interest.
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Logarithmic potential theory also has a lot of applications. The CEP can be applied in a number of
apparently unrelated domains. It can be used to study weak limits of zeros of orthogonal polynomials
[8,11,15,16]. It can also be used in the theory of integrable systems [7,11].

The authors got interested in the CEP by another application, namely convergence theory of Krylov
subspace methods [1–5,10,12]. The connection with logarithmic potential theory is excellently described
in the review papers [9,13]. The CEP can be used in this context to obtain accurate information on the
convergence of the Arnoldi method for computing eigenvalues [10,12].

However, the CEP is not easy to solve explicitly. Only for some cases an explicit solution is known, and
for other cases some properties can be derived without being able to obtain an explicit solution. Hence it
would be interesting to obtain an approximate numerical solution.

In [6] a numerical method to solve the CEP is devised based on constrained Leja points. In a way, this is
a natural approach. However, we feel that the method developed here gives better results. The numerical
algorithm presented here is closely related to a theoretical algorithm called the iterated balayage algorithm
[14].

The paper is organized as follows. In the next section some elements of potential theory are introduced
and Section 3 explains how the algorithm works. The numerical experiments are presented in Section 4,
followed by the conclusions.

2. Potential theory

In this section some definitions and properties of logarithmic potential theory will appear. For a more
detailed treatment, the reader is referred to [17,18].

The logarithmic potential of a measure � is defined as

U�(z) =
∫

log
1

|z − z′| d�(z′) (1)

and its logarithmic energy is given by

I (�) =
∫ ∫

log
1

|z − z′| d�(z′) d�(z). (2)

An important problem in logarithmic potential theory is the energy problem. Let K ⊂ C be a compact
set:

If there exists a probability measure on K with finite energy, the solution to this problem is unique and
is called the equilibrium measure of K. It is denoted by �K . It can also be characterized in terms of its
potential:
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Property 2.1. Let �K be the solution of the energy problem. Then the potential U�K is constant almost
everywhere on K (with respect to �K ) and smaller everywhere else. Moreover it is the only probability
measure with that property.

A related problem is the constrained energy problem (CEP). Let � be a Borel probability measure in
the complex plane with compact support K and finite logarithmic energy I (�), and let t ∈ (0, 1).

Note that it is still asked that the support of the measure is contained in a fixed compact set K. We will
suppose that the constraint � is fixed and we will not indicate it in the notation; the solution of this CEP
will be denoted by �t .

It is clear that if t�K ��, then the equilibrium measure also solves the CEP: �t = �K . As for the
equilibrium measure, there is also a characterizing property in terms of the potential.

Property 2.2. Assume U� is continuous and real-valued and let �t be the solution of the CEP. Then U�t

is equal to a constant Ct on supp(� − t�t ) and smaller than or equal to Ct everywhere else. Moreover, the
only probability measure � that satisfies 0� t��� and whose potential U� is constant on supp(� − t�)

and smaller everywhere else, is �t .

So here also the potential is constant on a certain set and smaller everywhere else. Since 0� t�t ��,
this set supp(� − t�) is just the set where t� < � (in the sense of densities). The algorithm will use
the characterization from this property to obtain the solution. For conciseness, we give the equivalent
formulation:

A very useful property can be obtained if we drop the condition 0� t���. The following lemma can be
deduced from [8, Theorem 2.8] and from [14, Lemma 3]. We use the notation �+ for the positive part of
a signed measure �.

Lemma 2.3. Suppose � is a probability measure (not necessarily with t���) whose potential is constant
on supp(� − t�). Then supp(� − t�t ) is a subset of supp((� − t�)+).

So if there is a probability measure � whose potential U� is constant on supp(� − t�), then on the
region where t���, we know that t�t = �.
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3. The algorithm

From now on we will only be concerned with constraints � living on the real line, so that all integrals
will be over R. First the main idea of the algorithm will be introduced. Then we will treat the necessary
discretization. Finally some refinement ideas will be discussed, followed by an operation count.

3.1. Main loop

Using Lemma 2.3, we devise an algorithmic approach to solve the CEP. First we look for a Borel prob-
ability measure �(1) with support K whose potential is constant on K. This means �(1) is the equilibrium
measure �K of the set K. Then on the region where t�(1)��, we know that t�t=�, so we put �(2)=�/t there,
and on the other region we ask U�(2)

to be constant. This process will be repeated until at a certain point
�(k)��/t . Then the solution �t will be equal to �(k). However, this theoretical version of the algorithm
will only terminate for very special input. For most sets of input it will run infinitely. Since this is only
the case for the theoretical version, and not for the discrete version of the algorithm, this is not a problem.

In a high level language, this algorithm would look like

I := supp(�)

J := ∅
while � � �/t

�|J := 1
t
�|J

solve

{
U�|I = C − U�|J
‖�|I‖ = 1 − ‖�|J ‖

I := {“ t� < �” }
J := {“ t� � �” }

�t := �

The set I is the region where � is not known yet, J is the set where � is already known to be equal to �/t .
The potential of � needs to be constant on I, so we solve U� = U�|I + U�|J = C (where C is an unknown
constant), keeping in mind that � has to be a probability measure: ‖�‖ = ‖�|I‖ + ‖�|J ‖ = 1.

The output of this algorithm is a probability measure �t that satisfies 0� t�t �� and whose potential
U�t is constant on supp(�− t�t ). If the potential is also smaller than this constant outside of supp(�− t�),
Property 2.2 tells us that �t is the solution of the CEP. This will be proven in the next lemma. After step
k of the algorithm, the intermediate solution will be called �(k), C(k) will be the constant value of its
potential and Sk := supp(� − t�(k)).

Lemma 3.1. For every k, the potential U�(k)
is smaller than the constant C(k) outside Sk .

Proof. The proof will use induction on k.
The first intermediate solution �(1) is the equilibrium measure of K. Its potential U�(1)

is harmonic in
C\K , on K it has the value C(1) and at ∞ it is −∞. The maximum principle for harmonic functions
[17,18] then assures that U�(1)

is smaller than C(1) outside of K.
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Now suppose that U�(k−1)
is smaller than C(k−1) outside Sk−1. By construction, Sk ⊂ Sk−1, so it is

sufficient to prove that

U�(k) − C(k)�U�(k−1) − C(k−1). (3)

On Sk , the relation

U�k−�k−1 = C(k) − C(k−1) (4)

holds. Outside of Sk , �k − �k−1 is a negative measure, so from

U�k−�k−1 = U(�k−�k−1)|Sk + U
(�k−�k−1)|Sc

k , (5)

we learn that U�k−�k−1 is subharmonic outside of Sk , since the first term is harmonic outside of Sk and the
second term is subharmonic being the potential of a negative measure. Using the fact that a subharmonic
function reaches its maximum on the boundary, (4) proves (3). �

3.2. Discretization

Lemma 3.1 tells us that if the theoretical algorithm of the previous subsection converges, the output
solves the CEP. In this subsection, we will suppose that we have a discretization {x1, x2, . . . , xN } of
supp(�) and translate the algorithm to the discretization. The next subsection will explain how to choose
a suitable discretization.

A measure � will be represented by a vector v containing the values �j of the density d�/dx in the
discretization points xj . We will ask the (in)equalities of the CEP to hold only in the discretization points.

In order to be able to compute the mass of a measure � represented in this way, we will consider it to
be piecewise linear with respect to the Lebesgue measure:

d�(x) = (ajx + bj ) dx for x ∈ [xj−1, xj ]. (6)

The mass of the piecewise linear measure is given by

1

2

N∑
j=2

(�j−1 + �j )(xj − xj−1).

This expression is linear in the �j ’s, so we can create a row vector m, that depends only on the discretization
points xj , such that the equality mv = ‖�‖ holds for every piecewise linear measure � with discretization
v = [�1�2 . . . �N ]t .

We also need to compute the potential of a piecewise linear measure. Using integration by parts, we
find that a primitive function of x �→ log 1/|x − y| is

f (x, y) :=
{

(x − y)(log |x − y| − 1) if x 
= y,

0 if x = y
(7a)

and one of x �→ x log 1/|x − y| is

g(x, y) :=
{ 1

2 log |x − y|(x2 − y2) + 1
4(x + y)2 if x 
= y,

x2 if x = y.
(7b)
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Thus

U�(y) =
∫

log
1

|x − y| d�(x)

=
N∑

j=2

∫ xj

xj−1

log
1

|x − y|(ajx + bj ) dx

=
N∑

j=2

aj (g(xj , y) − g(xj−1, y)) + bj (f (xj , y) − f (xj−1, y)). (8)

Using (6), we can compute the aj ’s and the bj ’s in terms of the �j ’s:

{
�j−1 = ajxj−1 + bj ,

�j = ajxj + bj ,
⇒

⎧⎪⎨
⎪⎩

aj = �j − �j−1

xj − xj−1
,

bj = �j − ajxj = xj�j−1 − xj−1�j

xj − xj−1
.

Plugging this into Eq. (8), we see that the potential, evaluated at the discretization points xj is linear
in the �j ’s. Hence there is a matrix P, depending only on the discretization points xj , so that for every
piecewise linear measure � with discretization v,

U�(xj ) = (P v)j .

Now we can write down the discretized version of the CEP, the one we will solve. Suppose we have
a set of discretization points {x1, x2, . . . , xN } with corresponding vector m and matrix P. Let s be the
discretization of the constraint �.

So we limit our search space to the set of piecewise linear measures (represented by vectors) and we also
weaken the demands on the measure: the constraint is only felt in the discretization points.
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Finally, we write down the discretized version of the algorithm.

I := {1, 2, . . . , N}
J := ∅
while v�s/t

v(J ) := 1
t
s(J )

solve

{
P(I, I ) · v(I ) = C − P(I, J ) · v(J )

m(I) · v(I ) = 1 − m(J ) · v(J )
I := {“ tv < s” }
J := {“ tv�s” }

vt := v

Here I is the set of indices where v is not known yet and J ={1, 2, . . . , N}\I is the set of indices where v

is already known to be equal to s/t . The vector v(J ) is the vector consisting of the components of v with
indices in J and the matrix P(I, J ) is the matrix consisting of the rows and columns of P with row indices
in I and column indices in J. So we solve the system P(I, ∗)v = C under the constraint that mv = 1, and
write everything that is known to the right-hand side.

As mentioned in the previous subsection, the theoretical algorithm usually does not terminate in fi-
nite time. It should be noted that the discretized algorithm will terminate, since in every step at least
one discretization point is added to J. (When no discretisation point is added, the stopping criterion
is fulfilled.)

3.3. Refinement

If we compare the output of the algorithm sketched above with theoretical solutions of the CEP (in
cases where these theoretical solutions are known), the error is rather small (see Section 4). However, in
the endpoints of supp(� − t�) (i.e. the transition between t� = � and t� < �) it is much bigger than away
from those endpoints. This is not a big surprise. Theoretically, in typical cases, the density of �t should
have a vertical tangent in those points. The exact solution is not well approximated by a piecewise linear
measure in those points.

There are some possible solutions to this problem. One could put extra parameters in the model for
the measure, trying to make it possible for the measure to ‘go vertically’ there. This solution implies a
bigger system of equations to solve in each step. This makes the computation much slower, but even more
important is the memory usage of the algorithm, which is also greatly increased.

Another approach is restarting the algorithm with a different set of discretization points. In the neigh-
borhood of these ‘bad points’, we add some discretization points, to get a better approximation there. This
can be done repetitively. This last idea turned out to be the most effective. One should take care about the
accuracy, however; for the construction of the matrix P differences between consecutive discretization
points appear in denominators. Not only does this lead to a loss of correct digits in the formation of the
elements of P. This also causes the condition number of P to increase; the condition number is more or
less proportional to the inverse of the minimal node spacing.
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3.4. Time complexity

If N is the number of discretization points, creating the potential matrix P will take O(N2) operations
and solving a system with it takes O(N3) (if we use a direct method). We cannot actually prove a bound
for the number of iterations, but even for a large number of discretization points, the algorithm converges
after some 10–20 iteration steps. This gives a total number of O(N3) iterations.

We implemented the algorithm in MATLAB.1 If we use 1000 discretization points for the examples
treated in the next section, the algorithm takes less than 30 s to complete on a 1.5 GHz Pentium 4-processor
with 512 MB of memory.

4. Numerical examples

In this section, we will study the solution given by our algorithm for different sets of input. First we
will examine cases in which the support of the constraint consists of one interval and where the solution is
explicitly known. We will compare our solution with the theoretical one. We will also compare this with
the results from [6]. After that we will look at some cases where the support of the constraint consists of
several intervals. No explicit solution is known in these cases.

4.1. One interval

4.1.1. Rakhmanov’s example
Suppose d� = 1

2 dx|[−1,1]. In [16] the solution to the CEP with constraint � is given:

t
d�t

dx
(x) =

⎧⎪⎨
⎪⎩

1

2
if x ∈ [−1, −r] ∪ [r, 1],

1

�
arctan

(
t

1 − t2 − x2

)
if x ∈ [−r, r],

(9)

where r = √
1 − t2. For t = 0.5, � and t�t are plotted in Fig. 1(a).

For 500 equidistant discretization points for [−1, 1], the error of the computed solution is plotted in
Fig. 1(b). The maximal deviation of the theoretical solution is 2.8 × 10−3 and the condition number of
the matrix P is 7.1 × 103. Refining the discretization as described in Section 3.3, we can get the maximal
deviation down to 3.1 × 10−5. The minimal node spacing is 6.1 × 10−7 and the condition number is
5.4 × 107. The error is plotted in Fig. 1(c).

4.1.2. Ullman distribution
Now take the case where d� = (2/�)

√
1 − x2 on [−1, 1]. In [8] the solution is given:

t
d�t

dx
(x) =

⎧⎨
⎩

2

�

√
1 − x2 if x ∈ [−1, −r] ∪ [r, 1],

2

�

(√
1 − x2 − √

1 − t − x2
)

if x ∈ [−r, r],
(10)

1 MATLAB is a registered trademark of The Mathworks, inc.
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Fig. 1. Example 4.1.1: (a) constraint � and theoretical solution t�t ; (b) error of the computed solution with 500 equidistant
discretization points; and (c) error of the computed solution after the refinement.

where r = √
1 − t . In Fig. 2(a), � and t�t are shown for t = 0.4. In Fig. 2(b) the errors of the computed

solution are plotted for 500 equidistant discretization points. The maximal deviation is 1.9×10−4. Using
the refinement technique, this error could not be made significantly smaller.

4.1.3. Comparison with the constrained Leja point algorithm
In [6], the CEP is solved numerically using Leja points. Only plots are given there, which only allows

for a qualitative comparison. However, looking at the difference between the theoretical solution and
the computed one, one has to conclude that the results we get are far more accurate (even without any
refinement). No operation count or timing is given, so a speed comparison is impossible.
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Fig. 2. Example 4.1.2: (a) constraint � and theoretical solution t�t ; and (b) error of the computed solution with 500 equidistant
discretization points.

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) 0 1 2 3 4 5 6 7
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

(b)

Fig. 3. Numerical results for multiple intervals: (a) a constant constraint on [0, 1] ∪ [2, 3], t = 0.8; and (b) a constant constraint
on [0, 1] ∪ [2, 3] ∪ [6, 7], t = 0.8.

4.2. More intervals

For the multiple interval case, we look at the constant constraint on [0, 1]∪[2, 3] and on [0, 1]∪[2, 3]∪
[6, 7], with t = 0.8. To the best of our knowledge, no explicit solution is known. The numerical results
can be found in Fig. 3.
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5. Conclusion

We have devised an algorithm for solving the constrained energy problem which appears in logarithmic
potential theory. The algorithm is based on Property 2.2, which allows for an equivalent formulation of
the CEP, only using the logarithmic potential. This is important since the logarithmic potential is a linear
functional of the measure, so that a discretization gives a system of linear equations.

In [6], the constrained Leja point algorithm is proposed to solve the CEP. That approach seems natural,
but the results we obtain are better.
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