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CONVERGENCE OF THE ISOMETRIC ARNOLDI PROCESS∗
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Abstract. It is well known that the performance of eigenvalue algorithms such as the Lanczos
and the Arnoldi methods depends on the distribution of eigenvalues. Under fairly general assumptions
we characterize the region of good convergence for the isometric Arnoldi process. We also determine
bounds for the rate of convergence and we prove sharpness of these bounds. The distribution of
isometric Ritz values is obtained as the minimizer of an extremal problem. We use techniques from
logarithmic potential theory in proving these results.
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1. Introduction. Unitary eigenvalue problems arise in a number of different
fields, for example, signal processing and trigonometric approximation problems (for
references, see [10]). There exist numerical methods specifically designed to solve such
eigenvalue problems. In this article we examine the convergence of one such method:
the isometric Arnoldi process (IAP), which was introduced by Gragg [15]. Recently,
Stewart proved numerical stability of a variant in [25]. Other useful references include
[9, 16].

The Arnoldi iteration method is a very popular method for computing some
eigenvalues of a matrix. For a unitary matrix U ∈ C

N×N , the method can be adapted
to exploit the structure. Here we give an outline of the method. An orthonormal
basis q1, q2, . . . , qN is created for C

N based on a Gram–Schmidt orthogonalization of
the vectors b, Ub, U2b, . . . , UN−1b for some starting vector b ∈ C

N . If Q is the unitary
matrix with the qj as its columns, we get UQ = QH for some unitary Hessenberg
matrix H, which necessarily has the same eigenvalues as U . The Arnoldi idea is
to look at the n × n leading principal submatrix Hn of H (for some n � N) and
to compute the eigenvalues of Hn. It is hoped that some of these eigenvalues are
good approximants to some of the eigenvalues of U . If the required eigenvalues are
indeed approximated and if n � N , then operating on Hn instead of H can save a
considerable amount of computing time.

The matrix Hn is not unitary anymore, except in cases of “lucky breakdown.”
Ignoring such cases, we have that all eigenvalues are strictly inside the unit circle.
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The numbers we want to calculate are on the unit circle, so it is natural to take
the approximants also on the unit circle. To this end we modify the matrix Hn. To
make it a unitary matrix, it suffices to rescale the last column. Then we take the
eigenvalues of the modified submatrices as approximants. This is the basic idea of the
IAP. In actual implementations of the IAP, the computations are done implicitly and
involve only the Schur parameters (γn)n that are associated with a unitary Hessenberg
matrix.

For the convergence of the IAP, it is important to know in what sense the ap-
proximation of eigenvalues takes place and which eigenvalues are well approximated.
We will consider this question from the point of view of logarithmic potential theory.
Polynomial minimization problems provide the connection between Krylov subspace
methods in numerical linear algebra and potential theory, which is clearly explained
by Driscoll, Toh, and Trefethen [12]. See also [26, p. 279], where one finds the rule
of thumb that the Lanczos iteration tends to converge to eigenvalues in regions of
“too little charge” for an equilibrium distribution. This rule of thumb for the Lanczos
method was made more precise in [5, 18]. It is the aim of this paper to apply similar
ideas to the IAP.

Note that potential theory was also used in recent papers [4, 6, 7, 8, 24] for the
convergence analysis of other iterative methods in numerical linear algebra.

The rest of the paper is organized as follows. In the next section we state our
main results. Then we collect the properties of unitary Hessenberg matrices and para-
orthogonal polynomials that we need for our purposes. In particular we mention a
polynomial minimization problem, which is crucial for the link to potential theory. We
have not seen this minimization problem in the literature before, but it may be known
to specialists in the field. Section 4 contains the proofs of the main results. In the
last section we will discuss some numerical experiments that illustrate our theoretical
results.

2. Statement of results. The results we obtain will be of an asymptotic nature.
We do not investigate the eigenvalues of a single unitary matrix U , but instead we look
at a sequence of unitary matrices (UN )N , with UN ∈ C

N×N . This setting reflects,
for example, the discretization of a continuous problem with decreasing mesh size.
The eigenvalues and orthonormal eigenvectors of UN are denoted by {λk,N}Nk=1 and
{vk,N}Nk=1, respectively. We also take a unit starting vector bN ∈ C

N for every N .
For our results, we have to impose a number of mild conditions on the sequence of
matrices.

In the conditions, and also in the rest of the paper, the logarithmic potential Uµ

of a measure µ appears. This is the function

Uµ(z) =

∫
log

1

|z − z′| dµ(z′),

which is a harmonic function outside the support of µ. The logarithmic potential
Uµ may take the value −∞. Further, δλ denotes the Dirac point mass in λ and ‖·‖
denotes the Euclidian two-norm of a vector. The unit circle in the complex plane is
denoted by T.

Conditions 2.1.

(1) There exists a probability measure σ on T whose logarithmic potential Uσ is
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real valued and continuous, such that

lim
N→∞

1

N

N∑
j=1

δλj,N
= σ.(2.1)

(2) For every ε > 0 there exists a δ ∈ (0, 1) so that for all sufficiently large N and
for all k � N

N∏
j=1

0<|λj,N−λk,N |<δ

|λj,N − λk,N | > e−Nε.(2.2)

(3) For every N , we have that ‖bN‖ = 1 and

lim
N→∞

(
min

1�k�N
|〈bN , vk,N 〉|

)1/N

= 1.(2.3)

The limit in (2.1) is in the sense of weak*-convergence of measures. In this paper
convergence of measures will always be in the weak*-sense, i.e., if ν and νn are Borel
probability measures on T, then νn → ν if and only if∫

f dνn →
∫

f dν

for every continuous function f on T. Thus the first condition states that the eigen-
values have a limiting distribution σ. The condition that Uσ is continuous and real
valued (and so does not take the value −∞) is a regularity condition on σ. It is
satisfied, for example, if σ has a bounded density with respect to the Lebesgue mea-
sure on T. The second condition is a technical one that prevents the eigenvalues
from being too close to each other. Beckermann [5, Lemma 2.4(a)] proved that under
Condition 2.1(1), Condition 2.1(2) is equivalent with the following.

(2b) For all sequences (kN )N with kN ∈ {1, . . . , N} such that limN→∞ λkN ,N = λ
for some λ, we have

lim
N→∞

1

N

N∑
j=1
j �=kN

log|λkN ,N − λj,N | =

∫
log|λ− z|dσ(z).(2.2b)

A discussion about this condition can be found in [19]. The third condition imposes
that the starting vectors are sufficiently random, i.e., their eigenvector components
are not exponentially small. Since the numbers |〈bN , vj,N 〉| will be used frequently,
we introduce a shorter notation:

wj,N := |〈bN , vj,N 〉|.(2.4)

For every N we consider the IAP on UN with starting vector bN . Iteratively, an
orthonormal basis is created for the Krylov subspaces

Kn,N = span{bN , UNbN , U2
NbN , . . . , Un−1

N bN}.

If we compute a basis for whole C
N in this way, UN is represented by a Hessenberg

matrix in this basis. The n× n principal left upper block Hn,N of this matrix is the
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representation of the orthogonal projection of UN onto Kn,N . By modifying the last

column of Hn,N we can obtain a unitary Hessenberg matrix H̃n,N . The modification
depends on a unimodular constant ρn,N ; see also section 3. The precise value of ρn,N
is not important to our results, and we will not indicate the dependence on ρn,N in
our notation. Let

ψn,N (z) = det(zIn − H̃n,N ),(2.5)

where In denotes the n × n identity matrix and let θ1,n,N , θ2,n,N , . . . , θn,n,N be the
zeros of ψn,N . We call these numbers the Ritz values for the IAP or the isometric

Ritz values. Since they are the eigenvalues of H̃n,N , which is a unitary matrix, the
isometric Ritz values are on the unit circle. We take the eigenvalues of the matrices
UN and the isometric Ritz values to be numbered counterclockwise, but we do not
specify a starting point. We also take λ0,N := λN,N and θ0,n,N := θn,n,N .

In section 3 (see Proposition 3.4 below) we will prove that the isometric Ritz
values are separated by the eigenvalues, by which we mean that on the open arc
between two consecutive isometric Ritz values there is at least one eigenvalue, or put
differently, on the closed arc between any two consecutive eigenvalues there is at most
one isometric Ritz value.

We consider the convergence of isometric Ritz values along ray sequences, i.e., we
let N approach infinity, and with it also n, in such a fashion that n/N → t for some
t ∈ (0, 1). If we consider the points (N,n) in a triangular array, then the convergence
is taken along a sequence of (N,n) values that are asymptotic to a line with slope t
in the N -n plane. We denote a limit in this sense by limn,N→∞,n/N→t.

Theorem 2.2. Let (UN ) and (bN ) be such that Conditions 2.1 hold. Then for
every t ∈ (0, 1), there exists a Borel probability measure µt, depending only on t and
σ, such that

lim
n,N→∞
n/N→t

1

n

n∑
j=1

δθj,n,N
= µt(2.6)

and a real constant Ft such that

lim
n,N→∞
n/N→t

‖ψn,N (UN )bN‖1/n = exp(−Ft).(2.7)

The measure µt satisfies

0 � tµt � σ,

∫
dµt = 1(2.8)

and minimizes the logarithmic energy

I(µ) =

∫∫
log

1

|z − z′| dµ(z)dµ(z′)(2.9)

among all measures µ satisfying 0 � tµ � σ and
∫

dµ = 1. The logarithmic potential
Uµt of µt is a continuous function on C, and the constant Ft is such that{

Uµt(z) = Ft for z ∈ supp(σ − tµt),

Uµt(z) � Ft for z ∈ C.
(2.10)
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Furthermore, the relations (2.8) and (2.10) characterize the pair (µt, Ft).
This theorem tells us that the isometric Ritz values have a limiting distribution

µt if we let n,N → ∞ in such a way that n/N → t. The measure µt is the minimizer
of the logarithmic energy (2.9) under the constraints (2.8). Conditions (2.10) are the
Euler–Lagrange variational conditions for this minimization problem and together
with (2.8) they also characterize µt.

The next theorem shows that in a certain region the isometric Ritz values converge
exponentially fast to eigenvalues.

Theorem 2.3. Let (UN ) and (bN ) be such that Conditions 2.1 hold and let Ft be
as in Theorem 2.2. Then we have, for every t ∈ (0, 1),

lim sup
n,N→∞
n/N→t

min
j

|λkN ,N − θj,n,N |1/n � exp
(
Uµt(λ) − Ft

)
(2.11)

for every sequence of indices (kN ) with 1 � kN � N , such that (λkN ,N )N converges
to λ ∈ T.

We define the set

Λ(t, σ) := {λ ∈ T | Uµt(λ) < Ft}.

This is the region of good convergence of the IAP in the regime we are considering.
Inside this set, the right-hand side of (2.11) is strictly less than 1, which indicates that
for large N , an eigenvalue λkN ,N of UN in Λ(t, σ) is approximated by an isometric
Ritz value at a geometric rate. Outside Λ(t, σ), the right-hand side is just one and
then no convergence can be guaranteed.

In the next theorem, we will show that the convergence rate is actually twice
as big, except for perhaps one eigenvalue. It is also proven that this convergence
bound is sharp. In the theorem there will appear “exceptional indices”: the sharper
convergence rate will hold for all indices except for these “exceptional indices.”

Theorem 2.4. Let (UN ) and (bN ) be such that Conditions 2.1 hold, let Ft be as
in Theorem 2.2, and let λ ∈ Λ(t, σ). Then for every N , there exists at most one index
k∗N (λ) ∈ {1, 2, . . . , N} such that the following holds. If (kN ) is a sequence of indices
with 1 � kN � N and kN �= k∗N (λ) for every N large enough, such that (λkN ,N )N
converges to λ, then we have

lim
n,N→∞
n/N→t

min
j

|λkN ,N − θj,n,N |1/n = exp
(
2
(
Uµt(λ) − Ft

))
.(2.12)

Remark 2.5. The fact that the convergence rate can be doubled was first realized
by Beckermann [5] in the context of the convergence of the Lanczos method. He also
introduced the exceptional indices. The proof of Theorem 2.4 is based on the proof
of [5, Theorem 2.1], but we have streamlined some of the arguments; see section 4.4
below.

Remark 2.6. It is possible to prove the inequality

lim sup
n,N→∞
n/N→t

min
j

|λkN ,N − θj,n,N |1/n � exp
(
2
(
Uµt(λ) − Ft

))

under weaker conditions; see [5].
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There are two types of possible exceptional behavior for the index k∗N (λ) in The-
orem 2.4, namely,

min
j

|λk∗
N

(λ),N − θj,n,N |1/n 	 exp
(
2
(
Uµt(λ) − Ft

))
,(2.13a)

min
j

|λk∗
N

(λ),N − θj,n,N |1/n � exp
(
2
(
Uµt(λ) − Ft

))
.(2.13b)

According to Theorem 2.4 at most one of them can occur for a fixed N . So we
have three possible situations: no exception, exception (2.13a), or exception (2.13b).
Which situation occurs will depend on the choice of parameter ρn,N . To show what
happens, we will make a classification of the relative positioning of the isometric Ritz
values and the eigenvalues in a closed arc I ⊂ Λ(t, σ).

It will be shown in Proposition 3.4 that the isometric Ritz values are separated by
the eigenvalues, and (2.11) tells us that each eigenvalue in Λ(t, σ) is approximated at
an exponential rate. Since the gaps between eigenvalues are not exponentially small
(see Lemma 4.2), each Ritz value can be close to a single eigenvalue only, if N is large
enough. From this information we can make a complete classification of the relative
positions of eigenvalues and isometric Ritz values on the arc I ⊂ Λ(t, σ).

Case 1: Each eigenvalue in I is close to exactly one isometric Ritz value and the
isometric Ritz value follows closely after the eigenvalue (when looking in
the counterclockwise direction).

Case 2: One eigenvalue in I is close to two isometric Ritz values, one on each side
of it.

Case 3: One isometric Ritz value in I is not close to an eigenvalue.
Case 4: Each eigenvalue in I is close to exactly one isometric Ritz value and the

isometric Ritz value precedes the eigenvalue (when looking in the coun-
terclockwise direction).

Case 5: One isometric Ritz value in I coincides with an eigenvalue.
Case 6: One arc between two consecutive eigenvalues in I contains no isometric

Ritz values.
The six different cases are illustrated in Figure 2.1, are mutually exclusive, and cover
all possibilities. In [2] and [3, Theorem 2.12] one can find a similar description of the
zeros of discrete orthogonal polynomials on the real line.

Recall that the IAP depends on the choice of a unimodular constant ρn,N . If
we move ρn,N around the unit circle in the counterclockwise direction, the isometric
Ritz values also move in the counterclockwise direction, as shown in Figure 2.1. If
we start in Case 1, no isometric Ritz value can leave “its” eigenvalue until an extra
isometric Ritz value enters the arc I from the right, then we are in Case 2. Next, one
isometric Ritz value is free to move away from its eigenvalue, and we pass via Case 3
to Case 2 again. This process is shown in parts (a)–(d) of Figure 2.1. Continuing this
way, we see that the eigenvalue that is well approximated by two isometric Ritz values
“moves” through I, until it drops off and we reach Case 4 (part (h) of Figure 2.1). We
stay in Case 4 until the left-most isometric Ritz value reaches “its” eigenvalue. Then
one isometric Ritz value exactly coincides with an eigenvalue and we are in Case 5.
The left-most isometric Ritz value then passes the eigenvalue and we are in Case 6,
where there are two consecutive eigenvalues without an isometric Ritz value on the
arc between them. We refer to this arc as a gap. The gap moves to the right as shown
in parts (j)–(n) of Figure 2.1, until we reach Case 1 again; see part (p).

Now we turn to the exceptional cases. In Cases 1, 3, and 4, there are no exceptions.
The exception (2.13a) may occur in Case 2. In Case 2 there are two isometric Ritz
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(a) Case 1

(b) Case 2

(c) Case 3

(d) Case 2

...

(e) Case 2

(f) Case 3

(g) Case 2

(h) Case 4

(i) Case 5

(j) Case 6

(k) Case 5

(l) Case 6

...

(m) Case 5

(n) Case 6

(o) Case 5

(p) Case 1

Fig. 2.1. The evolution of the isometric Ritz values in a closed arc I ⊂ Λ(t, σ) when ρn,N

moves counterclockwise around T. The full dots are the eigenvalues and the open circles are the
isometric Ritz values. The possibilities of their location are the following.

Case 1: An isometric Ritz value follows after each eigenvalue at close distance.
Case 2: Two isometric Ritz values are close to the same eigenvalue.
Case 3: One isometric Ritz value is not close to any eigenvalue.
Case 4: An isometric Ritz value precedes each eigenvalue at close distance.
Case 5: One isometric Ritz value coincides with an eigenvalue.
Case 6: One arc between two eigenvalues contains no isometric Ritz values.

values close to the same eigenvalue. In this case the doubling of the exponent in (2.12)
need not take place.

In Cases 5 and 6 the exception (2.13b) appears. This is clear if an eigenvalue and
an isometric Ritz value coincide, which corresponds to Case 5. In Case 6 there is a gap
and this case arises out of Case 5 after a small perturbation of the parameter. For a
sufficiently small perturbation, the isometric Ritz value is still closer to the eigenvalue
than predicted by (2.12). So in Case 6 there may be one eigenvalue around the gap
with an isometric Ritz value that is too close to it. This eigenvalue corresponds to the
exceptional index. It may be somewhat surprising that only one of the eigenvalues
around the gap may be an exception while the other one is not.

Remark 2.7. Theorems 2.3 and 2.4 are clearly of an asymptotic nature. They
express that eigenvalues in the set Λ(t, σ) are well approximated by isometric Ritz
values, provided n and N are large enough. In certain situations one might be dealing
with a single unitary matrix and in such a case it is not clear whether the matrix is
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large enough or not. Actually, our methods do not provide a framework for looking
at a single matrix. Indeed, a basic assumption is that the eigenvalues of the matrix
are distributed according to a measure σ (see Condition 2.1(1)), and this notion does
not make sense for a fixed single matrix. In such a case, our results can only give an
indication of the convergence behavior of the IAP.

On the other hand, it might happen that the unitary matrix is naturally embedded
in a sequence of unitary matrices if it arises from a discretization of a physical system.
This is, for example, the case in the signal processing context discussed in [9]. Then
it is reasonable to assume that the sequence of matrices has a limiting eigenvalue
distribution as in Condition 2.1(1), and our results apply to the full sequence. Again,
our results do not apply to an individual matrix. However, our experience shows that
if the matrix comes from a sequence with a limiting eigenvalue distribution, then the
convergence behavior predicted by the theory can already be observed for matrices
of moderate size (say 500 × 500). Therefore we believe our results can be of help to
understand the convergence behavior of IAP, also when applied to matrices of a fixed
finite size.

3. Unitary Hessenberg matrices and para-orthogonal polynomials. In
this section we collect a number of results that can be found in various sources and we
put them in a form that is convenient for our purposes. The size N is fixed throughout
this section and will not be indicated in the notation.

We consider a unitary matrix U of size N ×N with simple eigenvalues λ1, . . . , λN

and corresponding normalized eigenvectors v1, . . . , vN . We also consider a unit start-
ing vector b ∈ C

N with a nonzero component in the direction of every eigenvector.
We define a measure

ν =

N∑
j=1

w2
j δλj

=

N∑
j=1

|〈b, vj〉|2δλj
.

Since b is a unit vector and the vj form an orthonormal basis of C
N , we have that

∫
dν =

N∑
j=1

|〈b, vj〉|2 = ‖b‖2 = 1,

so that ν is a discrete probability measure supported on the eigenvalues λj .
Lemma 3.1. For every function f : T → C, we have

‖f(U)b‖2 =

∫
|f |2 dν.

Proof. Let V be the unitary matrix with the vj as columns and let Λ be the diago-
nal matrix with the λj on the diagonal, so U = V ΛV ∗ is the eigenvalue decomposition
of U . Then f(U) = V f(Λ)V ∗ and, since V is unitary,

‖f(U)b‖ = ‖V f(Λ)V ∗b‖ = ‖f(Λ)V ∗b‖.

Now f(Λ) is a diagonal matrix with f(λj) on the diagonal and V ∗b is a vector whose
jth component is v∗j b = 〈b, vj〉. Hence

‖f(U)b‖2 =

N∑
j=1

|f(λj)〈b, vj〉|2 =

∫
|f |2 dν,
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which proves the lemma.
If carried out to the end, the IAP transforms the unitary matrix U to the N ×N

unitary upper Hessenberg matrix H,

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

h11 h12 · · · h1N

h21 h22

h32
. . .

...
. . .

hN,N−1 hNN

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

with real and positive subdiagonal elements hj+1,j > 0. The eigenvalues of H and U
are the same. The principal leading submatrix of size n × n will be denoted by Hn.
The matrices Hn, n < N , are not unitary, since the norm of the last column of Hn is
strictly less than one. We define the characteristic polynomials

φn(z) = det(zIn −Hn).

Lemma 3.2. The polynomial φn is the monic polynomial of degree n that is
orthogonal with respect to ν.

Proof. We define polynomials ϕn, n = 0, . . . , N , recursively by ϕ0(z) ≡ 1 and

zϕk(z) =

k+1∑
j=0

hj+1,k+1ϕj(z) for k = 0, . . . , N − 1,(3.1)

where we have put (somewhat arbitrarily) hN+1,N = 1. Then we have, for n � N ,

(3.2)
[
ϕ0(z) ϕ1(z) · · · ϕn−1(z)

]
Hn

= z
[
ϕ0(z) · · · ϕn−1(z)

]
−
[
0 · · · 0 hn+1,nϕn(z)

]
.

It follows from (3.2) that every zero of ϕn is an eigenvalue of Hn. This shows that
ϕn is a multiple of φn provided that the zeros of ϕn are simple. If z0 is a zero of ϕn

of multiplicity m, then taking j derivatives of (3.2) and putting z = z0, we get, for
every j = 1, . . . ,m− 1,

(3.3)
[
ϕ

(j)
0 (z0) ϕ

(j)
1 (z0) · · · ϕ

(j)
n−1(z0)

]
Hn

= z0

[
ϕ

(j)
0 (z0) · · · ϕ

(j)
n−1(z0)

]
+ j

[
ϕ

(j−1)
0 (z0) · · · ϕ

(j−1)
n−1 (z0)

]
.

Thus the vectors

1

j!

[
ϕ

(j)
0 (z0) ϕ

(j)
1 (z0) · · · ϕ

(j)
n−1(z0)

]
, j = 0, 1, . . . ,m− 1,

are a left Jordan chain for Hn of length m, which means that z0 is a zero of φn(z) =
det(zI − Hn) of multiplicity at least m. Since this holds for every zero of ϕn, we
get that ϕn is a multiple of φn also in the case of multiple eigenvalues. The leading
coefficient of ϕn can be computed with (3.1) and we see that

ϕn(z) =

(
n∏

j=1

h−1
j+1,j

)
det(zIn −Hn) =

(
n∏

j=1

h−1
j+1,j

)
φn(z);(3.4)
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see also [13].
From (3.2) with n = N , it follows that

[
ϕ0(λj) ϕ1(λj) · · · ϕN−1(λj)

]
is a

left eigenvector of H for the eigenvalue λj . Let

w̃j = ‖
[
ϕ0(λj) ϕ1(λj) · · · ϕN−1(λj)

]
‖−1

so that
[
w̃jϕ0(λj) w̃jϕ1(λj) · · · w̃jϕN−1(λj)

]
is a normalized eigenvector of H.

Since the matrix H is unitary (hence normal) with simple spectrum, its normalized
eigenvectors form an orthonormal basis of C

n. Thus

S =

⎡
⎢⎣
w̃1ϕ0(λ1) · · · w̃1ϕN−1(λ1)

...
. . .

...
w̃Nϕ0(λN ) · · · w̃NϕN−1(λN )

⎤
⎥⎦

is unitary. Then S∗S = I and if we look at the individual matrix entries of this last
expression, we find

N∑
j=1

w̃2
jϕk(λj)ϕl(λj) = δk,l for k, l = 0, 1, . . . , N − 1.

So the polynomials ϕn are orthonormal polynomials with respect to the measure∑N
j=1 w̃

2
j δλj

, and because of (3.4) we have that the polynomials φn are the monic
orthogonal polynomials with respect to this measure.

Now we show w̃j = |〈b, vj〉| for j = 1, . . . , N to complete the proof of the lemma.
We know that UQ = QH where Q is a unitary matrix whose first column is b.
From the eigenvalue decomposition U = V ΛV ∗ we get that V ∗QH = ΛV ∗Q, which
means that v∗jQ is a normalized left eigenvector of H for the eigenvalue λj . Also[
w̃jϕ0(λj) · · · w̃jϕN−1(λj)

]
is a normalized left eigenvector with λj . Then the

first components have the same absolute values. The first column of Q is equal
to b so that the first component of v∗jQ is equal to v∗j b = 〈b, vj〉. Thus we have
w̃j = |w̃jφ0(λj)| = |〈b, vj〉|.

The previous lemma connects the Arnoldi process to the theory of orthogonal
polynomials and in particular to the Arnoldi minimization problem; see, for example,
[26].

Arnoldi minimization problem. Minimize ‖pn(U)b‖ among all monic poly-
nomials pn of degree n.

It is a general fact that the monic polynomial φn of degree n which is orthogonal
with respect to µ minimizes the L2(µ) norm (

∫
|pn|2 dµ)1/2 among all monic polyno-

mials pn of degree n. Because of Lemma 3.1 it is then clear that φn is the minimizer
in the Arnoldi minimization problem.

We want to establish a similar minimization problem for the isometric Arnoldi
process. To that end we first recall that H can be decomposed as a product of Givens
reflectors [15] (see also [1]):

H = G1(γ1)G2(γ2) · · ·GN−1(γN−1)G̃N (γN ),

for some complex parameters γj satisfying |γj | < 1 for j = 1, . . . , N − 1 and |γN | = 1.
The matrices Gj(α) are given by

Gj(α) =

⎡
⎢⎢⎣
Ij−1

−α
√

1 − |α|2√
1 − |α|2 ᾱ

IN−j−1

⎤
⎥⎥⎦ ,
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and G̃N (γN ) is given by

G̃N (α) =

[
IN−1

−α

]
.

The numbers γj are called the Schur parameters for the unitary Hessenberg matrix

H. We use the notation H = H(γ1, . . . , γN ). If we define σj :=
√

1 − |γj |2 and write
out the above product, we get an explicit expression for H in terms of the Schur
parameters:

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−γ1 −σ1γ2 −σ1σ2γ3 · · · −σ1 · · ·σN−2γN−1 −σ1 · · ·σN−1γN
σ1 −γ̄1γ2 −γ̄1σ2γ3

σ2 −γ̄2γ3

σ3
. . .

...
...

. . .

−γ̄N−2σN−1γN
σN−1 −γ̄N−1γN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

From this expression for the matrix, it is easy to see that Hn = H(γ1, . . . , γn). Since
the matrices Gj(α) have determinant −1, and G̃n(α) has determinant −α, it easily
follows that [14]

φn(0) = det(−Hn) = γn for n = 1, . . . , N.(3.5)

As mentioned before, the IAP modifies the matrix Hn in order to make it unitary.
The only thing that needs to change is the length of the last column. To rescale that
last column, we construct

H̃n := H(γ1, . . . , γn−1, ρn)

with ρn a unimodular number. This transformation amounts to multiplying the last
column of Hn by the number ρn

γn
(provided γn �= 0). Note that the parameter ρn can

be anywhere on the unit circle. The matrices H̃n do depend on the precise choice
of ρn, but its location will not be of any importance to us, as can be seen from the
theorems. As a consequence, we do not include the dependence on ρn in the notation.

We will need the concept of para-orthogonal polynomials. To that end, we recall
their definition; see, for example, [17]. For a polynomial p of degree n, let

p∗(z) = znp
(
1/z̄

)
be the reciprocal polynomial. The (monic) para-orthogonal polynomials ψn are then
defined by

ψn(z) :=
φn(z) + ωnφ

∗
n(z)

1 + ωnγ̄n
,(3.6)

where φn is the monic orthogonal polynomial with respect to the measure ν and
ωn ∈ T. Note that in the literature the para-orthogonal polynomials are usually
defined as φn + ωnφ

∗
n so that they are not monic.

We have to be careful here, since we have already defined a set of polynomials
ψn,N in (2.5). In fact, the two definitions are the same. More precisely, for every
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ρn ∈ T there exists an ωn ∈ T, and conversely for every ωn ∈ T there exists a ρn ∈ T,
such that

ψn(z) = det(zIn − H̃n),

where ψn is defined as in (3.6). The 1-1 correspondence between ρn and ωn is given
by

ρn = ωn

(
1 + ω̄nγn
1 + ωnγ̄n

)
, ωn = ρn

(
1 − ρ̄nγn
1 − ρnγ̄n

)
.(3.7)

This is a consequence of a remark in [1] and is easily verified using the recurrence
relations for the orthogonal polynomials and their reciprocals which are stated in
[15].

These polynomials are called para-orthogonal since they are orthogonal with re-
spect to ν to all polynomials of degree less than n without constant term [17], that
is, ∫

T

ψn(z)z̄k dν(z) = 0, k = 1, 2, . . . , n− 1.(3.8)

It is known that the zeros of ψn are simple and lie on the unit circle [15, 17]. We
denote them by θ1, . . . , θn. We recall that these zeros are the basis of the Gauss
quadrature formula on the unit circle [17]

n∑
j=1

βjp(θj) =

∫
pdν, βj > 0,(3.9)

which is valid for Laurent polynomials p of degree � n−1 (i.e., for linear combinations
of zk with k = −n + 1,−n + 2, . . . , n− 2, n− 1).

Our next result, which is the main result of this section, states that the para-
orthogonal polynomials solve a minimization problem, similar to the Arnoldi mini-
mization problem. We call it the isometric Arnoldi minimization problem. While this
result may be known already, we have not seen it in the literature.

Isometric Arnoldi minimization problem. Minimize ‖pn(U)b‖ among all
monic polynomials pn of degree n satisfying pn(0) = ρn, where ρn ∈ T is given.

Theorem 3.3. The minimizer of the isometric Arnoldi minimization problem is
unique and is given by the monic para-orthogonal polynomial ψn, where ωn is related
to ρn as in (3.7).

Proof. Let ψn be the monic para-orthogonal polynomial of degree n with param-
eter ωn = ρn

(
1−ρ̄nγn

1−ρnγ̄n

)
. Using the same reasoning as the one leading to (3.5), we find

ψn(0) = ρn.
If pn is an arbitrary monic polynomial of degree n with pn(0) = ρn, then pn −ψn

is a linear combination of z, z2, . . . , zn−1, so that by the para-orthogonality property
(3.8) we have ∫

ψn(z)(pn(z) − ψn(z)) dν(z) = 0.

Thus ∫
ψnp̄n dν =

∫
|ψn|2 dν.
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This leads to ∫
|pn − ψn|2 dν =

∫
|pn|2 dν −

∫
|ψn|2 dν,

from which we deduce that ∫
|pn|2 dν �

∫
|ψn|2 dν,

with equality if and only if
∫
|pn−ψn|2 dν = 0. Since pn−ψn is a polynomial of degree

n − 1 and the measure ν is carried on N points, equality can hold only if pn = ψn.
Thus by Lemma 3.1

‖pn(U)b‖ � ‖ψn(U)b‖

with equality if and only if pn = ψn. This proves the theorem.
Using Theorem 3.3 we will now prove that the zeros of the para-orthogonal poly-

nomial ψn (which are on the unit circle) are separated by the eigenvalues of U .
Proposition 3.4. Let n < N . Then the zeros of ψn are separated by the

eigenvalues of U .
Proof. Let θ1 and θ2 be two distinct zeros of ψn. We have to show that there

is an eigenvalue on the open arc between θ1 and θ2. Without loss of generality, we
may restrict ourselves to the case that θ1 = e−is0 , θ2 = eis0 , where s0 ∈ (0, π). The
eigenvalues are of the form λj = eisj with −π � sj � π. Then

ψn(z) = (z − e−is0)(z − eis0)qn−2(z),(3.10)

where qn−2 is a polynomial of degree n − 2. We know from Theorem 3.3 that ψn

minimizes

‖pn(U)b‖2 =

N∑
j=1

w2
j |pn(λj)|2,

among all monic polynomials of degree n with pn(0) = ρn (see also Lemma 3.1). For
each s, we have that (z − e−is)(z − eis)qn−2(z) is a monic polynomial with value ρn
at z = 0. Thus

I(s) :=

N∑
j=1

w2
j (|λj − e−is||λj − eis|)2|qn−2(λj)|2

is minimal for s = s0. Observe that

|λj − e−is||λj − eis| = |eisj − e−is||eisj − eis|

= 4

∣∣∣∣sin sj − s

2
sin

sj + s

2

∣∣∣∣ = 2|cos s− cos sj |,

so that

I(s) = 4

N∑
j=1

w2
j (cos s− cos sj)

2|qn−2(λj)|2
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and therefore

I ′(s0) = −8 sin s0

N∑
j=1

w2
j (cos s0 − cos sj)|qn−2(λj)|2.(3.11)

Now let us assume that there are no eigenvalues on the open arc between θ1 and
θ2. Then 0 < s0 � |sj | � π and so cos s0 − cos sj � 0 for every j = 1, 2, . . . , N . There
are at least N − 2 values of j with 0 < s0 < |sj | � π so that cos s0 − cos sj > 0 for at
least one j. (We suppose N > 2 since otherwise n � N − 1 � 1 and there is nothing
to prove.) It follows that all terms in the sum on the right-hand side of (3.11) are
nonnegative and at least one is positive. Hence I ′(s0) �= 0 (note sin s0 �= 0, since
s0 ∈ (0, π)), which contradicts the fact that I(s) has a minimum for s = s0. The
proposition is proved.

Remark 3.5. Let θ1 and θ2 be as in the proof of Proposition 3.4. Let us denote
the circular arc from θ1 to θ2 by [θ1, θ2] and the complementary arc from θ2 to θ1

by [θ2, θ1]. Note that λj ∈ [θ1, θ2] implies that cos s0 − cos sj � 0, so the fact that
I ′(s0) = 0, where I ′(s0) is given by (3.11), means that∑
λj∈[θ1,θ2]

w2
j |λj − θ1||λj − θ2||qn−2(λj)|2 =

∑
λj∈[θ2,θ1]

w2
j |λj − θ1||λj − θ2||qn−2(λj)|2.

We rewrite this in terms of the para-orthogonal polynomial ψn as

∑
λj∈[θ1,θ2]

w2
j

|ψn(λj)|2
|λj − θ1||λj − θ2|

=
∑

λj∈[θ2,θ1]

w2
j

|ψn(λj)|2
|λj − θ1||λj − θ2|

.(3.12)

There is an exact balance between the contributions from both arcs.
Remark 3.6. By now it is clear that the structure of unitary Hessenberg matrices

with positive subdiagonal elements (connected to the IAP) is very similar to the struc-
ture of Jacobi matrices (connected to the Lanczos process). We have para-orthogonal
polynomials instead of orthogonal polynomials, but both kinds of polynomials are
characterized by a minimization problem and for both there is a separation property
for their zeros. Since these properties of orthogonal polynomials were among the main
tools in the study of the convergence of the Lanczos process in [18], we can use similar
ideas for the convergence of the IAP, as will be clear from the proofs of the theorems
that we give in the next section.

4. Proofs of Theorems 2.2, 2.3, and 2.4. Here we give the proofs of our
main Theorems 2.2, 2.3, and 2.4. We will also make essential use of properties of
logarithmic potentials Uµ. We refer the reader to [22, 23] for background information
on logarithmic potential theory.

In what follows we use χp to denote the normalized zero counting measure of a
polynomial p. So if p has degree n, then

χp =
1

n

∑
p(λ)=0

δλ,

where the sum is over all zeros of p and the zeros are counted according to their
multiplicity.

Note that in section 3 we dropped the index N . Here it will reappear and we will
use the properties and results of section 3 with no further comment.
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4.1. Proof of Theorem 2.2. Theorem 2.2 was established for orthogonal poly-
nomials whose zeros are on the real line by Rakhmanov [21]. Dragnev and Saff [11]
used similar ideas to prove a more general theorem (including external fields), and
weakened one of the conditions of Rakhmanov. Although these papers do not mention
matrix iterations, we can nicely fit our setting in their results. The proof follows along
arguments given in [11, 21]. We will indicate how we can modify them to the case of
para-orthogonal polynomials, who have their zeros on the unit circle.

Proof of Theorem 2.2. Rakhmanov [21] showed that there exists a unique Borel
probability measure µt that minimizes the logarithmic energy (2.9) among all Borel
probability measures µ satisfying 0 � tµ � σ. He also showed that there exists a
constant Ft such that (2.10) is satisfied and that (2.8) and (2.10) characterize the
pair (µt, Ft). So we still need to prove (2.6) and (2.7).

The first step is to show that

lim sup
n,N→∞
n/N→t

‖ψn,N (UN )bN‖1/n � e−Ft .(4.1)

The proof of (4.1) follows the proof of Lemma 5.3 in [11]. For a given ε > 0, a monic
polynomial qN of degree n with all its zeros on the unit circle is constructed for every
large enough N so that

lim sup
n,N→∞
n/N→t

‖qN (UN )bN‖1/n � e−Ft+ε.(4.2)

There is a set A ⊂ T so that every eigenvalue of UN outside A is a zero of qN , and
the rest of the zeros of qN are taken in such a way that χqN → µt. We need to modify
this construction slightly in order to guarantee that

qN (0) = ψn,N (0) = ρn,N .(4.3)

Since all the zeros of qN are on the unit circle, qN (0) has unit modulus, and so we can
achieve (4.3) by moving one of the zeros in A to a different position on the unit circle.
This will not affect the estimate (4.2). Having (4.2) and (4.3) we use Theorem 3.3 to
conclude that

lim sup
n,N→∞
n/N→t

‖ψn,N (UN )bN‖1/n � e−Ft+ε.

Since ε can be chosen arbitrarily small, (4.1) follows.
In the second step we establish the following. Suppose we are given a sequence

(qN )N of monic polynomials such that qN has degree n, the zeros of qN are separated
by the eigenvalues of UN and the normalized zero counting measures χqN have a
weak*-limit µ. Then

lim inf
n,N→∞
n/N→t

‖qN (UN )bN‖1/n � e−Fµ

,(4.4)

where

Fµ = min
z∈supp(σ−tµ)

Uµ(z).(4.5)
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Dragnev and Saff [11, Lemma 5.5] showed this for the case of the real line. The same
proof works here.

In the third step we show that

Fµ � Ft(4.6)

for every Borel probability measure µ with 0 � tµ � σ, and equality in (4.6) holds if
and only if µ = µt. Thus let µ be a Borel probability measure such that 0 � tµ � σ.
Let z ∈ supp(σ − tµ). We know from (2.10) that Uµt(z) � Ft and from (4.5) that
Fµ � Uµ(z). Hence

Uσ−tµ(z) − Uσ−tµt(z) = t(Uµt(z) − Uµ(z)) � t(Ft − Fµ).(4.7)

On C \ supp(σ − tµ) we have that Uσ−tµ is harmonic and Uσ−tµt superharmonic,
so that Uσ−tµ − Uσ−tµt is a subharmonic function there. Since Uσ−tµ − Uσ−tµt is
bounded at infinity (it has limit 0 at infinity), we can apply the maximum principle
for subharmonic functions [22, Theorem 2.3.1], [23, Theorem 0.5.2], and it follows
that (4.7) holds for every z ∈ C. At infinity the left-hand side is 0, so that Fµ � Ft.

If Fµ = Ft, then we get Uµt − Uµ � 0 everywhere. Since at infinity these two
functions are equal and their difference is a harmonic function on C \ T, we can
conclude that it is zero outside the unit disc. By continuity, it is also zero on the unit
circle. Inside the unit disc it is harmonic, and applying the maximum principle again,
we find that it is zero inside the unit disc. So Uµt = Uµ everywhere, which means
that µt = µ [22, Corollary 3.7.5], [23, Corollary II.2.2].

Now, collecting all the pieces finishes the proof. By Proposition 3.4, we know that
the zeros of ψn,N are separated by the eigenvalues of UN . Let µ be a weak*-limit of
a subsequence of the sequence of normalized zero counting measures (χψn,N

). Then
we find by (4.1) and (4.4) that

e−Fµ � lim inf
n,N→∞
n/N→t

‖ψn,N (UN )bN‖1/n � lim sup
n,N→∞
n/N→t

‖ψn,N (UN )bN‖1/n � e−Ft ;(4.8)

hence Fµ � Ft. From the separation property of the zeros of ψn,N it also follows that
0 � tµ � σ. By (4.6) we must have Fµ = Ft so that µ = µt. Hence the inequalities
in (4.8) are all equalities, which proves (2.7). We also see that µt is the only possible
limit of a weak*-convergent subsequence of (χψn,N

). Since the unit circle is compact,
the set of Borel probability measures on T is compact in the weak*-topology. Hence
the full sequence (χψn,N

) converges to µt, which gives (2.6).
This concludes the proof of Theorem 2.2.

4.2. Three lemmas. For the proof of Theorems 2.3 and 2.4 we need a number of
lemmas. We will use the approach of Beckermann [5], who established these theorems
for the Lanczos process. We will assume that the Conditions 2.1 hold.

The first lemma is borrowed from [6].
Lemma 4.1 (see [6]). Let σ be a Borel probability measure on the unit circle and

suppose (ΛN )N is a sequence of sets, all contained in T, such that

lim
N→∞

1

N

∑
λ∈ΛN

f(λ) =

∫
f(λ) dσ(λ)

for every continuous function f on T.
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Let t ∈ (0, 1) and let µ be a Borel probability measure such that tµ � σ. Let
n = nN � �ΛN such that n/N → t. Then there exists a sequence of sets (ZN )N such
that

(a) �ZN = n,
(b) ZN ⊂ ΛN , and
(c) for all continuous functions f ,

lim
n,N→∞
n/N→t

1

n

∑
λ∈ZN

f(λ) =

∫
f(λ) dµ(λ).

Furthermore, if K is a closed set such that σ(∂K) = 0 and σ(K) = tµ(K), then the
sets ZN can be chosen such that in addition to (a), (b), and (c), we also have for N
large enough,

(d) ΛN ∩K ⊂ ZN .
Proof. In [6, Lemma A.1] this lemma is proven for the case where the sets ΛN

are contained in the real line. The same proof works here.
The following lemma tells us that the eigenvalues inside Λ(t, σ) are not exponen-

tially close.
Lemma 4.2 (see [5]). We have

lim
N→∞

min{|λk±1,N − λk,N |1/N : k = 1, 2, . . . , N} = 1,

where we take λ0,N = λN,N and λN+1,n = λ1,N .
Proof. In [5, Lemma 2.4(b)] this lemma is proven for the case of points on the

real line. The same proof works here.
The next lemma gives an estimate for |λk,N − θκ−1,n,N ||λk,N − θκ,n,N |, where

λk,N is on the closed arc between θκ−1,n,N and θκ,n,N . Recall that the isometric Ritz
values are numbered counterclockwise and that θ0,n,N := θn,n,N . We introduce the
function

rκ,n,N (z) = (z−1 − θ̄κ−1,n,N )(z − θκ,n,N )
√
θκ−1,n,N/θκ,n,N , κ = 1, . . . , n,(4.9)

where we choose the branch of the square root belonging to the lower half plane.
Thus, if θκ−1,n,N = eiτ1 and θκ,n,N = eiτ2 with 0 < τ2 − τ1 < 2π, then

√
θκ−1,n,N/θκ,n,N = e−i

τ2−τ1
2 .(4.10)

Observe that |λk,N − θκ−1,n,N ||λk,N − θκ,n,N | = |rκ,n,N (λk,N )|.
Lemma 4.3. Let rκ,n,N (z) be defined as in (4.9)–(4.10). Then the following hold.
(a) The function rκ,n,N (z) is real and negative for z on the open arc from θκ−1,n,N

to θκ,n,N and real and positive on the complementary open arc.
(b) Let λk,N be on the closed arc from θκ−1,n,N to θκ,n,N . Then for every poly-

nomial q of degree at most n− 2,

w2
k,N |q(λk,N )|2|rκ,n,N (λk,N )| �

∑
j �=k

w2
j,N |q(λj,N )|2rκ,n,N (λj,N ).(4.11)

(c) Equality holds in (4.11) for the polynomial

q(z) =
ψn,N (z)

(z − θκ−1,n,N )(z − θκ,n,N )
,(4.12)
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0

θ
θ

κ,n,N

κ-1,n,N

(a) The unit
circle

0

(b) z �→ e−i
τ1+τ2

2 z

0

(c) z �→ Re(z)

0

(d) z �→ −2z + 2 cos τ2−τ1
2

Fig. 4.1. The image of the unit circle under the mapping z �→ rκ,n,N (z) step by step. Note
that the arc between θκ−1,n,N and θκ,n,N is mapped to (part of) the negative real axis and the
complementary arc to (part of) the positive real axis.

where ψn,N is the monic para-orthogonal polynomial.
Proof. Let z ∈ T and choose τ1 = arg θκ−1,n,N , τ2 = arg θκ,n,N such that 0 <

τ2 − τ1 < 2π. Then we have for z ∈ T,

rκ,n,N (z) = (z − eiτ2)(z̄ − e−iτ1)e−i
τ2−τ1

2

= (e−i
τ1+τ2

2 z − ei
τ2−τ1

2 )(ei
τ1+τ2

2 z̄ − ei
τ2−τ1

2 )e−i
τ2−τ1

2

= e−i
τ2−τ1

2 − e−i
τ1+τ2

2 z − ei
τ1+τ2

2 z̄ + ei
τ2−τ1

2

= −2 Re(e−i
τ1+τ2

2 z) + 2 cos
τ2 − τ1

2
.

This shows that rκ,n,N (z) is real for z ∈ T. Moreover, rκ,n,N is the composition of the

mappings z �→ e−i
τ1+τ2

2 z, z �→ Re z, and z �→ −2z + 2 cos τ2−τ1
2 . The effect of these

mappings on the unit circle is plotted step by step in Figure 4.1. Following these
mappings, we obtain the statements of part (a).

To prove part (b), we use the Gaussian quadrature formula (3.9). We know that
there exist positive real numbers β1,N , . . . , βn,N such that

N∑
j=1

w2
j,Np(λj,N ) =

n∑
j=1

βj,Np(θj,n,N )(4.13)

for every Laurent polynomial p of degree n− 1. Now let q be a polynomial of degree
at most n− 2 and write

p(z) = rκ,n,N (z)q(z)q̄(z−1),(4.14)

where q̄ is the polynomial whose coefficients are the complex conjugates of the coef-
ficients of q. This p is a Laurent polynomial of degree n − 1, so we can apply (4.13)
to p. Because of part (a), we know that rκ,n,N (θj,n,N ) � 0 for all j. Since also
q(z)q̄(z−1) = |q(z)|2 � 0 for all z ∈ T, we see that p(θj,n,N ) � 0 for all j. So the
right-hand side of (4.13) is nonnegative, which implies that

−w2
k,Np(λk,N ) �

∑
j �=k

w2
j,Np(λj,N ),(4.15)
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which gives

−w2
k,Nrκ,n,N (λk,N )|q(λk,N )|2 �

∑
j �=k

w2
j,Nrκ,n,N (λj,N )|q(λj,N )|2.(4.16)

Now rκ,n,N (λk,N ) < 0 according to part (a) again, since λk,N is on the arc from
θκ−1,n,N to θκ,n,N . Using this in (4.16) we obtain (4.11). This proves part (b).

Finally, if we use the polynomial q from (4.12) in the construction (4.14), then
the right-hand side of (4.13) equals zero, since all terms vanish. This leads to equality
in (4.11), so that part (c) follows.

For every polynomial q of degree at most n − 2 with q(λk,N ) �= 0, (4.11) can be
rewritten as

(4.17) |λk,N − θκ−1,n,N ||λk,N − θκ,n,N |

�
∑

j �=k w
2
j,N (λ̄j,N − θ̄κ−1,n,N )(λj,N − θκ,n,N )

√
θκ−1,n,N/θκ,n,N |q(λj,N )|2

w2
k,N |q(λk,N )|2 .

From this we deduce

(4.18) min
j

|λk,N − θj,n,N | �
(
|λk,N − θκ−1,n,N ||λk,N − θκ,n,N |

)1/2

�
(∑

j �=k w
2
j,N |λ̄j,N − θ̄κ−1,n,N ||λj,N − θκ,n,N ||q(λj,N )|2

w2
k,N |q(λk,N )|2

)1/2

�
(

maxj �=k|q(λj,N )|
|q(λk,N )|

)(
4

∑
j �=k w

2
j,N

w2
k,N

)1/2

.

4.3. Proof of Theorem 2.3. To prove Theorem 2.3, we use the estimate (4.18).
We are going to find estimates for the numerator and denominator of the first factor
in the right-hand side. To this end we will construct a suitable polynomial q.

Proof of Theorem 2.3. Let (kN )N be a sequence of indices so that limN→∞ λkN
=

λ. Since all eigenvalues and all isometric Ritz values are contained in the unit circle,
there is nothing to prove if Uµt(λ) = Ft.

So suppose Uµt(λ) < Ft and let ε ∈ (0,−Uµt(λ) + Ft). Define

K := {z ∈ T | −Uµt(z) + Ft � ε}.

Since Uσ is continuous, so is Uµt (see, e.g., [11, Lemma 5.2]), so that K is closed and
contains an η-neighborhood of λ (we take η < 1). Now K ∩ supp(σ − tµt) = ∅, so
σ(K) = tµt(K). Without loss of generality we may suppose that σ(∂K) = 0 (see also
Remark 4.4 below). We can now obtain a sequence of sets (ZN )N by Lemma 4.1 with
µ = µt and n replaced by n− 1.

By Condition 2.1(2) we can choose δ < η such that (2.2) holds for N sufficiently
large and for all k � N . Note that by properties (b) and (d) of Lemma 4.1 and the
definition of K, all eigenvalues λj,N with |λj,N − λkN ,N | < δ are in ZN , when N is
large enough. We define

qN (z) :=
∏

λj,N∈Z′
N

(z − λj,N ),
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where Z ′
N := ZN \{λkN ,N} (so qN is a polynomial of degree n−2). Note that property

(c) of Lemma 4.1 still holds when we replace the sets ZN by Z ′
N , i.e., the sequence of

normalized zero counting measures of (qN )N converges in weak*-sense to µt.
We factor qN in two parts, one containing the zeros close to λkN ,N and one

containing the other zeros:

q
(1)
N (z) :=

∏
0<|λj,N−λkN ,N |<δ

(z − λj,N ), q
(2)
N (z) :=

qN (z)

q
(1)
N (z)

.

We also define the measures

µ
(1)
N :=

1

n− 2

∑
q
(1)

N
(λ)=0

δλ, µ
(2)
N :=

1

n− 2

∑
q
(2)

N
(λ)=0

δλ.

Then χqN = µ
(1)
N + µ

(2)
N , so that

UχqN (λkN ,N ) = Uµ
(1)

N (λkN ,N ) + Uµ
(2)

N (λkN ,N ).(4.19)

Because of Condition 2.1(2),

Uµ
(1)

N (λkN ,N ) < ε(4.20)

for N large enough. Since limn,N→∞,n/N→tµ
(2)
N = µt|T\B(λ,δ), we get

lim
n,N→∞
n/N→t

Uµ
(2)

N (λkN ,N ) = Uµt|T\B(λ,δ)(λ) = Uµt(λ) − Uµt|B(λ,δ)(λ) � Uµt(λ),(4.21)

where the last inequality holds since δ < 1. Combining the two estimates (4.20) and
(4.21) with (4.19), we get

lim sup
n,N→∞
n/N→t

UχqN (λkN ,N ) � Uµt(λ) + ε,(4.22)

so that

lim inf
n,N→∞
n/N→t

log|qN (λkN ,N )|1/n = lim inf
n,N→∞
n/N→t

−UχqN (λkN ,N ) � −Uµt(λ) − ε.(4.23)

Now we are going to estimate the absolute value of qN on the rest of the spectrum
of UN . By construction, qN (λj,N ) = 0 for λj,N ∈ K \ {λkN ,N}, so we have

max
j �=kN

|qN (λj,N )| = max
λj,N �∈K

|qN (λj,N )| � sup
z∈T\K

|qN (z)|.

Since the zero distributions of qN converge to µt, we can apply the principle of descent
[23, Theorem I.6.8]. Then we get

(4.24) lim sup
n,N→∞
n/N→t

max
j �=kN

log|qN (λj,N )|1/n � lim sup
n,N→∞
n/N→t

sup
z∈T\K

1

n
log|qN (z)|

� sup
z∈T\K

(
−Uµt(z)

)
� −Ft + ε,
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where the last inequality follows from the definition of K.
If we now choose q = qN and k = kN in (4.18), we get

(4.25) lim sup
n,N→∞
n/N→t

min
j

|λkN ,N − θj,n,N |1/n

� lim sup
n,N→∞
n/N→t

[(
maxj �=kN

|qN (λj,N )|
|qN (λkN ,N )|

)1/n(
4

∑
j �=kN

w2
j,N

w2
kN ,N

)1/2n
]
,

The second factor in the lim sup on the right-hand side of (4.25) converges to 1,
because of Condition 2.1(3), while the first factor is handled by (4.23) and (4.24).
The result is that

lim sup
n,N→∞
n/N→t

min
j

|λkN ,N − θj,n,N |1/n � exp
(
Uµt(λ) − Ft + 2ε

)
.

Since this holds for all ε > 0, (2.11) is proven.
Remark 4.4. If the set K is Cantor-like and the measure σ singular, we might

have that σ(∂K) > 0. However, since

∂K ⊆ {z ∈ T | −Uµt(z) + Ft = ε}

we have that σ(∂K) > 0 can only happen for a countable number of ε’s. So if
σ(∂K) > 0, we can choose a smaller ε so that σ(∂K) = 0 and continue with the proof
of Theorem 2.3.

4.4. Proof of Theorem 2.4. We finally give the proof of Theorem 2.4. As noted
before, the proof is based on the proof of [5, Theorem 2.1], but we have streamlined
some of the arguments.

Proof of Theorem 2.4. Since λ ∈ Λ(t, σ) we have Ft−Uµt(λ) > 0. By continuity
there is a δ-neighborhood ∆δ of λ and an ε > 0 such that Ft − Uµt(z) > ε for
z ∈ ∆δ. Because of Theorem 2.3 we then know that each eigenvalue λk,N ∈ ∆δ has
an isometric Ritz value close to it if N is large. More precisely, we can ensure that

min
j

|λk,N − θj,n,N | � e−nε

for all λk,N ∈ ∆δ if N is large enough.
Now we study the relative positions of eigenvalues and isometric Ritz values.

Using (i) the separation property (see Proposition 3.4), (ii) the fact that eigenvalues
are exponentially well approximated (see Theorem 2.3), and (iii) the fact that the
distance between eigenvalues is not exponentially small (see Lemma 4.2), we can
make a complete classification of these relative positions for N large enough. The
different cases were plotted in Figure 2.1. The exceptions are covered below and
illustrated in Figure 4.2.

From the separation property we conclude that close to an eigenvalue there can be
at most two isometric Ritz values (one on either side of it on the unit circle). However,
it is easily seen that at most one eigenvalue λ�1,N in ∆δ can be approximated by two
isometric Ritz values, again because the isometric Ritz values are separated by the
eigenvalues and because each eigenvalue is well approximated by at least one isometric
Ritz value. In this case we define the exceptional index as k∗N (λ) := �1.
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λl1,N

(a) Case 2: The excep-
tional eigenvalue is ap-
proximated by two iso-
metric Ritz values.

λl2,N

(b) Case 5: The excep-
tional eigenvalue coin-
cides with an isometric
Ritz value.

λl l3,N λ
3 ,N-1

(c) Case 6: The excep-
tional eigenvalue is one
of the two eigenvalues
indicated; see (4.26).

Fig. 4.2. The definition of the exceptional indices in the different cases (see Figure 2.1). In
Cases 1, 3, and 4 no exceptions need to be made.

Another possibility is that an eigenvalue λ�2,N and an isometric Ritz value co-
incide. In similar fashion one can see that this happens at most once, and that this
case is not compatible with the previous one. Then we define the exceptional index
as k∗N (λ) := �2.

It is also possible that there are two consecutive eigenvalues, λ�3−1,N and λ�3,N ,
in ∆δ that do not have an isometric Ritz value on the arc between them. Again, it is
easily seen that this can happen only once in ∆δ and that this excludes the previous
two possibilities. In this case the exceptional index is either �3 − 1 or �3, depending
on the proximity of the nearest isometric Ritz value. More precisely, let θκ,n,N be the
first isometric Ritz value after λ�3,N . We define the exceptional index as

k∗N (λ) :=

{
�3 if |θκ,n,N − λ�3,N | � |θκ−1,n,N − λ�3−1,N |,
�3 − 1 otherwise.

(4.26)

Now if λkN ,N → λ, then for N large enough λkN ,N ∈ ∆δ. Furthermore, if
kN �= k∗N (λ), there is exactly one isometric Ritz value θj,n,N close to λkN ,N (Case 2
is the only exception to this). All other isometric Ritz values are at a distance whose
nth root limit is 1 (see Lemma 4.2). It then follows that (4.18) can be sharpened to

min
j

|λkN ,N − θj,n,N | � cn,N

(
maxj �=k|q(λj,N )|

|q(λk,N )|

)2

,

with constants cn,N such that limn,N→∞,n/N→tc
1/n
n,N = 1. Examining the proof of

Theorem 2.3, we see that this leads to

lim sup
n,N→∞
n/N→t

min
j

|λkN ,N − θj,n,N |1/n � exp
(
2
(
Uµt(λ) − Ft

))
.(4.27)

Next we prove the lower bound for minj |λkN ,N − θj,n,N |1/n when kN �= k∗N (λ).
Choose κ such that λkN ,N is on the arc from θκ−1,n,N to θκ,n,N . From Remark 3.5 it
follows that

∑
λj,N∈[θκ−1,n,N ,θκ,n,N ]

w2
j,N

|ψn,N (λj,N )|2
|λj,N − θκ−1,n,N ||λj,N − θκ,n,N |

=
∑

λj,N �∈[θκ−1,n,N ,θκ,n,N ]

w2
j,N

|ψn,N (λj,N )|2
|λj,N − θκ−1,n,N ||λj,N − θκ,n,N | ,
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where [θκ−1,n,N , θκ,n,N ] denotes the circular arc going from θκ−1,n,N to θκ,n,N . Thus

∑
λj,N∈[θκ−1,n,N ,θκ,n,N ]

w2
j,N

|ψn,N (λj,N )|2
|λj,N − θκ−1,n,N ||λj,N − θκ,n,N |

=
1

2

N∑
j=1

w2
j,N

|ψn,N (λj,N )|2
|λj,N − θκ−1,n,N ||λj,N − θκ,n,N |

� 1

8

N∑
j=1

w2
j,N |ψn,N (λj,N )|2 =

1

8
‖ψn,N (UN )bN‖2.

Because of the limit (2.7) in Theorem 2.2, it then follows that

lim inf
n,N→∞
n/N→t

( ∑
λj,N∈[θκ−1,n,N ,θκ,n,N ]

w2
j,N

|ψn,N (λj,N )|2
|λj,N − θκ−1,n,N ||λj,N − θκ,n,N |

)1/n

� exp(−2Ft).

(4.28)

The sum on the left-hand side has at most two terms, one of them for λkN ,N .

If there is only one term in the sum on the left-hand side of (4.28) (Cases 1, 2, 3,
and 4) or if one of the terms is 0 (Case 5), then (4.28) says

lim inf
n,N→∞
n/N→t

(
w2

kN ,N

|ψn,N (λkN ,N )|2
|λkN ,N − θκ−1,n,N ||λkN ,N − θκ,n,N |

)1/n

� exp(−2Ft).(4.29)

Note that
ψn,N (z)

(z−θκ−1,n,N )(z−θκ,n,N ) is a monic polynomial of degree n − 2 with roots

θj,n,N , j �= κ− 1, κ. From (2.6) it follows that µt is the weak*-limit of the normalized
zero counting measures of these polynomials, and from this it follows that, by the
principle of descent [23, Theorem I.6.8]),

lim sup
n,N→∞
n/N→t

(
|ψn,N (λkN ,N )|

|λkN ,N − θκ−1,n,N ||λkN ,N − θκ,n,N |

)1/n

� exp(−Uµt(λ)).(4.30)

Using limn,N→∞
n/N→t

w
1/n
kN ,N = 1, we obtain from (4.29) that

lim inf
n,N→∞
n/N→t

(|λkN ,N − θκ−1,n,N ||λkN ,N − θκ,n,N |)1/n

� exp(−2Ft) lim inf
n,N→∞
n/N→t

(
|λkN ,N − θκ−1,n,N ||λkN ,N − θκ,n,N |

|ψn,N (λkN ,N )|

)2/n

,

and together with (4.30) this gives us

lim inf
n,N→∞
n/N→t

(|λkN ,N − θκ−1,n,N ||λkN ,N − θκ,n,N |)1/n � exp
(
2
(
Uµt(λ) − Ft

))
.(4.31)
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Now we can conclude

(4.32) lim inf
n,N→∞
n/N→t

min
j

|λkN ,N − θj,n,N |1/n

� lim inf
n,N→∞
n/N→t

(
|λkN ,N − θκ−1,n,N ||λkN ,N − θκ,n,N |

2

)1/n

� exp
(
2
(
Uµt(λ) − Ft

))
.

The other possibility is that there are two terms in the sum on the left-hand side
of (4.28). Then we are in Case 6. Let k′N be the index j giving the largest term in
the sum. Then

lim inf
n,N→∞
n/N→t

(
w2

k′
N
,N

|ψn,N (λk′
N
,N )|2

|λk′
N
,N − θκ−1,n,N ||λk′

N
,N − θκ,n,N |

)1/n

� exp(−2Ft)

and from this it follows as before that

lim inf
n,N→∞
n/N→t

min
j

|λk′
N
,N − θj,n,N |1/n � exp

(
2
(
Uµt(λ) − Ft

))
.(4.33)

Since minj |λkN ,N − θj,n,N | � minj |λk′
N
,N − θj,n,N | (by the definition of k∗N in (4.26)),

we also obtain (4.32) in this case.
Therefore we have (4.32) in both cases. Together with (4.27) this proves equation

(2.12).

5. Numerical experiments. For the numerical experiments, we take a large
unitary matrix U of size N ×N and we execute the IAP for every n � N (so we let
t = n/N vary from 0 to 1).

Our theoretical results are independent of the choice of the parameters ρn,N , but
for the experiments we have to make a choice. We choose ρn,N = γn,N/|γn,N |, as
this choice assures the modified submatrix stays as close as possible to the original
submatrix [16, Lemma 2.1].

The experiments were done on matrices U whose eigenvalues are distributed ac-
cording to a combination of von Mises distributions. A von Mises distribution is a
continuous distribution on T with density

P (eiθ) =
1

2πI0(α)
eα cos(θ−θ0),

where I0 is the modified Bessel function of the first kind and order 0. We have that θ0

is the mean direction and α is the concentration parameter. Von Mises distributions
appear in directional statistics [20].

For the experiments we used Matlab. Codes for unitary Hessenberg QR (UHQR)
were kindly provided to us by William B. Gragg and Michael Stewart. Random
numbers from the von Mises distributions were generated using the R environment.1

We sorted a very large sample of size mN and selected every mth point from it. A
typical value of m we used was m = 4000. The points were then used as the eigenvalues

1The R project for statistical computing, http://www.r-project.org.
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of an N ×N unitary matrix to which we applied the IAP. We followed this procedure
in order to obtain eigenvalues that follow the limiting distribution adequately. For
the matrix sizes we used (namely, N = 300), a fully random sample does not follow
the limiting distribution very well and our asymptotical results do not apply.

5.1. Distribution of isometric Ritz values. To improve the understanding
of the experiments, we recall the minimizing property of µt; see Theorem 2.2. If we
minimize I(µ) among all Borel probability measures supported on T then the solution
is the normalized Lebesgue measure on T [23, p. 25], which we denote here by λ. Now
if t is so small that tλ < σ, then µt is equal to λ, because of their respective minimizing
properties. So then everywhere tµt < σ, so that no convergence can be expected (see
the discussion after Theorem 2.3). If t grows, tλ will also increase, until for a certain
critical tcr it hits σ at the point (or points) where the density of σ is minimal. For
slightly larger t > tcr, eigenvalues will be found in a neighborhood of that point (or
those points), since eigenvalues are found where tµt = σ. If we let t increase further,
the region of good convergence also increases.

Continuing this line of thought, one might think that convergence will be slowest
in the region where the eigenvalue density has its maximum. However, this is not
necessarily true (although in many cases it is), since µt might be very different from
the normalized Lebesgue measure when t is not small.

In Figure 5.1 we present an example. The eigenvalues of the 300 × 300 matrix
U are distributed according to a combination of three von Mises distributions, with
respective parameter pairs

(θ0, α) = (−π/2, 6), (0, 5) and (π/2, 4).

The density is shown in part (a) of Figure 5.1. The distribution has three local
maxima near the values −i, 0, and i, that is, the points with angles −π/2, 0, and π/2.
Part (b) shows the convergence plot for the IAP. A + is plotted for every isometric
Ritz value whose distance to its nearest eigenvalue is less than 10−5.

It can be seen that the shape of the convergence plot resembles the eigenvalue
density. For the regions of low eigenvalue density, this follows from the preceding
discussion. If we look at higher values of t (i.e., more iterations), then we see a
difference between the two plots. The eigenvalue density has a maximum near −π

2 ,
but the eigenvalues near that maximum are approximated earlier than eigenvalues
near 0, where the peak is lower. To explain this phenomenon, we plotted a simulation
of tµt for t = 0.4 in Figure 5.2. In the region where the constraint σ is active, µt

does not look like λ at all, which is rather obvious (it is prohibited to do so by the
constraint σ). Figure 5.2 shows that eigenvalues in the peaks around −π/2 and π/2
are indeed found earlier than eigenvalues in the peak around 0.

5.2. Convergence speed. Now we will check the assertions of Theorem 2.4.
If we assume the right-hand side of (2.12) is constant as a function of t, we expect
linear convergence. In fact, that right-hand side is slightly decreasing, so we should
be able to observe a superlinear convergence (this superlinearity is of the same nature
as the one discussed in [6, 8]). In Figure 5.3(a) the convergence graphs are plotted
and indeed the (super)linearity appears.

We also tried to generate Case 2 from the classification made in Figure 2.1 also
shown in Figure 4.2(a); in this case two isometric Ritz values are close to the same
eigenvalue. Remember that this was an exception to the doubled convergence rate in
Theorem 2.4. We created a real orthogonal matrix, with 1 as an eigenvalue. In the
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(a) The distribution of eigenvalues
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Fig. 5.1. Convergence result for the IAP applied on a 300 × 300 matrix U with eigenvalues
distributed as in (a). In (b) the iteration step (dimension of the modified Hessenberg submatrix) is
plotted on the Y -axis and the phase angle of the eigenvalues on the X-axis. If an isometric Ritz
value is closer to an eigenvalue than 10−5, a “+” is plotted.
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Fig. 5.2. A simulation of tµt when σ is as in Figure 5.1(a) for t = 0.4.
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(a) Convergence graph of five eigen-
values of the example of Figure 5.1.
The eigenvalues that are approxi-
mated first clearly show the super-
linear behavior.
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(b) Convergence graph for an ex-
ample with the exception (2.13a) of
Theorem 2.4. The distance to the
eigenvalue 1 is either very small (if
an isometric Ritz value is 1 up to ma-
chine precision) or relatively large (if
a pair of complex conjugate isomet-
ric Ritz values approximates 1).

Fig. 5.3. Convergence graphs of individual eigenvalues.
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isometric Arnoldi process we took ρn,N = 1 so that the Hessenberg matrices are real
and nonreal isometric Ritz values come in conjugate pairs. So in each step there are
two possibilities. Either there is an isometric Ritz value at 1, or there is a pair of
complex conjugate isometric Ritz values closest to 1. In the latter case we have the
exception (2.13a). The convergence is then slower as in the typical case.

In Figure 5.3(b) we see that both kinds of behavior do happen, depending on the
value of n. If there is an isometric Ritz value at 1, then the distance is of course small
(zero up to machine precision), while the distance is much bigger if there is a pair of
complex conjugate Ritz values closest to 1. The graph only shows the results for an
even number of iterations, because in this example one isometric Ritz value turned
out to be 1 in every odd step starting at about n = 25.
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